A data storage strategy for generic, heterogenous
scientific data

Systems for storing and managing scientific data are often targeted at specific
data types, and often have specific applications in mind. This focus makes it
possible to build integrated systems that are tailored to important problems
and with implementations that cater to the experts in the field.

The downside is that systems are often expensive and difficult to extend. In
quickly developing fields (like molecular biology) there are large volumes of
data and a plethora of formats and technologies, and future uses can be hard to
predict. As these data are scientifically important, there is a need for lightweight
systems that can incorporate these data with a minimum of effort, yet maintain
enough structure to make the data reusable and interpretable in the future.

Goals

We have therefore designed a system with the following goals in mind:

The system should be generic, or data agnostic. It should not be limited to spe-
cific data types, and adding new data types and formats should be as effortless
as possible.

The system should be simple to understand. It should be easy for data managers
to handle data without explicit understanding of the data, and it should be
equally easy for domain experts to use data without much knowledge about
data management structures and systems. This implies a separation of data
management skills from domain knowledge.

It is important that the system is usable. This means that scientists can easily
obtain copies of relevant data, in formats they are used to, and with sufficient
metadata to ensure integrity and provenance. Similarly, it must be a minimum
of effort for the scientist and data manager to prepare new data sets for inclusion.

The system should be long term sustainable. This means it should be as technol-
ogy independent as possible, and not tied to any particular language or software.
It should be modular and forwards compatible, so that existing functionality will
not be affected by new developments in data or metadata formats.

Structure and implementation

Each data set is a stored in a unique directory, and the data is stored in files
using native file formats. This makes it simple to extract or transfer datasets
(with a file copying operation, or by exposing the directory to an HTTP server
and using e.g. curl or wget). Receiving data in standard formats also relieves
the scientist from learning about any structure imposed by the storage system.



Metadata is stored in a separate file (simply named meta.xml) using a simple
XML schema. The metadata consist of a list of files contained in the data set,
including checksums and file types. In addition, there is a free text description,
which allows markup of specific terms (e.g. names of species, dates, locations,
or references to other data sets). Using XML markup lets the system enforce
standard lexical formatting and reference notations (e.g. using TSN numbers to
uniquely identify species). An important part of the metadata is provenance of
the data, how did the data set come about.

Many central functions (including: search, visualization, automated analysis,
data conversion, data extraction, user management) are intentionally omitted
from the core specification of the system. By implementing these as separate,
external modules, these can be tailored to specific needs or domains, and ignore
data and metadata that are irrelevant for their purpose.

Use cases

Verification and validation of data sets include checking metadata contents and
data formats. An XML validator is used to ensure that the metadata file is
well-formed and that the lexical format of formal values is correct. Additional
checks, like md5 checksums, are performed by ad-hoc scripts.

Downloading a copy is performed with standard software operating on files, for
remote access using HTTP (wget or curl), SSH (scp, rsync).

Searching metadata is performed by scanning metadata files and building a
database (using xapian). A CGI front end provides a web interface.

Data submission is currently manual, and requires some intervention by a data
manager in order to construct an appropriate metadata file. This can also be
achieved through a web front end that allows the user to upload files and assists
in constructing the metadata file.

Automated analysis is performed by tools (typically simple scripts that wrap
standard analysis tools) that consume existing data sets in order to generate
new data sets. The metadata file is produced automatically, and incorporates
provenance information, including the use of data sets, tools and version.

Data search and data extraction by criteria not encoded in the metadata must
typically be tailored to specific data types.
Search front ends scan the metadata files, and incorporates all appropriate data
in an application-specific search database.

Conclusions

We have described a lightweight framework for generic data storage. This allows
scientist to easily submit and make use of data sets, and data managers to easily



incorporate and manage them, as well as implement independent applications
that make use of the data store.



