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ABSTRACT
Motivation: Efficient clustering is important for handling
the large amount of available EST sequences. Most con-
temporary methods are based on some kind of all-against-
all comparison, resulting in a quadratic time complexity.
A different approach is needed to keep up with the rapid
growth of EST data.
Results: A new, fast EST clustering algorithm is pre-
sented. Sub-quadratic time complexity is achieved by
using an algorithm based on suffix arrays. A prototype
implementation has been developed and run on a bench-
mark data set. The produced clusterings are validated
by comparing them to clusterings produced by other
methods, and the results are quite promising.
Availability: The source code for the prototype implemen-
tation is available under a GPL license from http://www.ii.
uib.no/∼ketil/bio/
Contact: ketil@ii.uib.no

INTRODUCTION
Expressed sequence tags (ESTs) constitute a valuable
and rapidly growing resource for different kinds of gene
analysis; for instance identification of genes, analysis of
gene structure (including alternative splicing), and gene
expression analysis. For human alone, there are now more
than four million EST sequences available.

Because of high redundancy, low quality, and short se-
quences, clustering of related EST sequences is important
in order to extract useful information efficiently. One natu-
ral goal for clustering is to group all ESTs originating from
the same gene (including possible splice variants). This is
the goal of for example, the UniGene clustering (Boguski
and Schuler, 1995). Each cluster can then be represented
by one or more consensus sequences, assembled from the
ESTs (Haas et al., 2000).

Commonly employed methods for sequence clustering
(e.g. Holm and Sander, 1998; Burke et al., 1999; Liang et
al., 2000) is based on pairwise comparison of sequences,
resulting in a similarity score. This score can either be
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calculated using standard software like BLAST (Altschul
et al., 1990) or FASTA (Lipman and Pearson, 1988), or use
other more specialized algorithms like d2 cluster’s word-
based approach.

In general, a transitive closure clustering based on a
similarity score can avoid doing an explicit all-against-
all comparison, but will in the worst case still need to
calculate the similarity between all sequence pairs. Thus,
clustering based on pairwise similarity imposes O(m2)

time complexity (where m is the number of sequences to
be clustered).

The UIcluster program (Pedretti, 2001) uses such a tech-
nique, maintaining a global lookup table for known sub-
strings to quickly eliminate many of the comparisons. Ad-
ditionally it avoids many of the comparisons by comparing
sequences only to a representative sequence from each of
the existing clusters.

Quadratic scalability can be acceptable for small num-
bers of sequences, but as databases available contain mil-
lions of ESTs, implying on the order of 1012 sequence
comparisons, faster algorithms are desirable.

The algorithm described in this paper uses a different
approach, inspired by suffix trees. Suffix trees, first
described by Weiner (1973), allow all occurrences of
identical substrings to be identified in O(n) time. This
gives us a very quick way to find all exact matches
between sequences, and we use this as a starting point for
EST clustering with sub-quadratic behavior.

TERMINOLOGY
A suffix array for a set of strings is a lexicographically
ordered array of all suffixes of the strings (Manber and
Myers, 1993).

Two sequences have a matching block if they have
contiguous segments that match exactly. A matching block
is maximal for a pair of sequences if the sequences differ
immediately beyond each end point of the block.

We define a parameter, k, that specifies the length of
the shortest matching blocks that the algorithm will detect.
A k-clique is the set of all sequences that have a specific
matching block of length k.
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A score of a pair of sequences is a numeric measure of
their similarity.

Unless otherwise specified, we will in the following
define the score of a set of matching blocks to be the
sum of the block lengths, and the score of a pair of
sequences to be the score of the highest scoring consistent
set of matching blocks, where a consistent set is a subset
of blocks that are non-overlapping and co-linear (i.e.
appearing in the same order) in the sequences.

In order to perform the actual clustering, it is necessary
to select the minimal score that will cause two sequences
to be clustered together. This value will be referred to as
the clustering threshold.

We let m denote the number of sequences, and n the
total number of nucleotides (i.e. average sequence length
is n/m).

ALGORITHM
The whole algorithm is divided into three parts. The
first part of the algorithm identifies the pairs that have
matching blocks. The second part uses the information
generated from this process to calculate a score for pairs
of sequences, and finally these scores form the basis for a
hierarchical clustering.

(1) Identify all matching blocks of length k:

(a) construct all suffixes from the data;
(b) sort the suffixes into a suffix array;
(c) group the suffixes that share a prefix of length

at least k into cliques;
(d) for each clique, generate the maximal matching

blocks between each pair of suffixes in the
clique.

(2) Score the resulting sequence pairs:

(a) for each pair of sequences sharing at least one
matching block, collect all matching blocks
between the two sequences;

(b) calculate the largest consistent set of matching
blocks, and the corresponding score for each
pair.

(3) Generate the clustering:

(a) starting with the highest scoring sequence
pair and working downward, build clusters
hierarchically by connecting sequences;

(b) split the clusters according to the clustering
threshold.

Identifying high-scoring pairs
While there exist general data clustering methods that take
into account the similarities between multiple objects in
order to determine whether to join clusters, single linkage

clustering is the most useful approach for clustering of
sequence fragments.

The underlying idea for the algorithm is that, while a
full similarity matrix contains O(m2) scores, less than
m scores are actually used in single linkage clustering.
Thus, one way to achieve significant improvement over
algorithms based on a similarity matrix, is to avoid
performing the low scoring comparisons.

We observe that since a suffix array is ordered, every
clique constitutes a contiguous section of it. Since all
sequences that share a matching block of length k are
grouped in a k-clique, we can, from each clique in turn,
obtain all sequence pairs that share each k-block.

Suffix array generation uses a straightforward, left-
wise radix sort, the i th pass sorting the suffixes on
the i th nucleotide. While the array could conceivably
have been built using a suffix tree algorithm (Weiner,
1973; McCreight, 1976; Ukkonen, 1995), the sorting
algorithm is conceptually very simple, and performs well
in the expected case. Also, while algorithms for suffix
tree construction have good asymptotic behavior, they
tend to consume a lot of memory, with poor locality
characteristics (Giegerich and Kurtz, 1995).

By first glance, our algorithm hardly does any better,
since it produces large intermediate data structures at each
level in the recursive sorting algorithm. However, we can
get the same result by performing the algorithm on subsets
of the data: Selecting a prefix length l ≤ k, we can for
all nucleotide words of length l extract from the data all
suffixes that have this word as a prefix. These suffixes can
then be sorted into a suffix array, cliques identified, and
pairs generated. We retain the pairs, but have no further
use for the suffixes in the suffix array, and its space can be
reclaimed before generating the suffix array for the next
prefix.

While the memory footprint of suffix array generation
thus is reduced by a factor of 4l , up to a maximum of
4k , the trade-off is increased time to perform the multiple
passes over data. The choice for prefix length that is opti-
mal in terms of running time, is thus the smallest value that
allows the entire program to execute in available RAM.

The sorting algorithm is also modified to keep track
of the match length between subsequent suffixes in the
array; this is simply the depth where the sorting terminates
(i.e. when there is only a single suffix to sort, or where
suffixes have been compared to their full length).

To reduce the number of pairs that are generated, and
to simplify book-keeping, we ignore matches that are
not maximal by checking that the sequences differ in
the preceding nucleotide—if not, the pair is redundant
anyway, since the maximal match must be present in
a clique elsewhere. Collecting and collapsing multiple
matches is achieved by sorting the list of pairs with respect
to the ESTs referenced.
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Scoring and cluster construction
Sequence scores can be calculated with tools like BLAST,
FASTA, or with the d2 algorithm. The present algorithm
instead constructs the largest consistent set from the
matching blocks already identified, and uses the sum of the
block lengths as the score. This calculation is performed
efficiently using a dynamic programming algorithm.

Clustering of the scored pairs starts with an empty set of
clusters. It takes at each step the highest scoring sequence
pair, and checks it against the current clusters to see
whether the ESTs are already in the same cluster. If not,
we have three possibilities: If the two existing clusters
have one each of the sequences, the clusters are merged. If
only one of the sequences are clustered, the other sequence
is added as a leaf to that cluster. Finally, if none of the
sequences are in any clusters, a new cluster is generated
with the sequences as leaves. The pair is then removed,
and the process is repeated for the next-highest scoring
pair, and so on.

The result is a set of clusters, where each cluster is a
binary tree, with the sequences as leaves. Each branching
node represents a sub-cluster less strongly connected
(since it is generated by a lower scoring sequence pair),
than sub-clusters below.

ANALYSIS
Generating the suffix array can be implemented in linear
time and space using a suffix tree. However, our sorting
approach turns out to be no different from constructing a
suffix tree using the lazytree algorithm by Giegerich and
Kurtz (1995) while collapsing the resulting tree. Thus, the
efficiency of such a direct sort should be quite good in
practice, and run in expected O(n log n) time, although
the worst-case behavior is quadratic.

Generating the suffix array in parts by prefix changes
the complexity slightly. With a prefix length of l, the data
set is traversed 4l times, and in each iteration the suffix
array for 1/4l th of the data set is constructed. However,
the depth of the tree does not change, so the resulting
time complexity becomes O(4ln + n log n), and the space
complexity O(n/4l).

The algorithm for generating pairs from a clique is
quadratic in the clique size. This is potentially a costly
step, there is a trade off between sensitivity and perfor-
mance; with k too small, the cliques will grow large and
running time will be impacted, with k too large, we may
miss some matches, which again may be necessary to
produce the correct clustering.

Score calculation will be performed on all generated
pairs, and thus for p pairs, the complexity will have a
factor p. Different algorithms defining the score metric
can have different time complexities; the one in the current
implementation uses a dynamic programming algorithm
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Fig. 1. Times for two complete clustering runs with the block size
varying from 12 to 40.

that runs in time linear in the number of blocks as long
as the blocks are non-overlapping. In order to handle
overlapping blocks, the worst case bounds becomes O(b2)

for b matching blocks, but as the worst case is rare, and
the number of blocks matching in two sequences is rarely
large for reasonable values of k, scoring is essentially
linear in p.

When a pair is to be added to the clustering, the ESTs
must be looked up in the existing clusters. Consequently,
each cluster stores the ESTs referenced in a searchable
structure, which typically has a lookup cost logarithmic
in the number of values stored. For p pairs and c clusters,
the cost thus becomes O(pc log p), and, as the clustering
stores each sequence exactly once, the space complexity
is linear in the number of sequences.

RESULTS
The algorithm was implemented in Haskell (http://www.
haskell.org), a high level functional language. The pro-
gram reads ESTs in FASTA format and produces the clus-
tering as a list of identifiers (usually UniGene accession
numbers).

The program was run on a PC equipped with a
1266 MHz Intel Xeon processor and 1 GB RAM,
using a benchmark data set available from SANBI
(http://www.sanbi.ac.za/benchmarks/). The data set con-
tained 10 000 sequences from human eye tissue, and
was masked for repeats and vector sequences using
cross match.

Efficiency
Time consumption is almost solely dependent on the
choice of matching block lengths, k. As shown in Figure 1,
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Fig. 2. Time consumed when clustering data sets with different
sizes.

the speed is approximately constant at around 3 min for
block lengths over 20, indicating that pair generation no
longer is a significant factor. For block lengths of less than
14, the running time becomes impractical.

For comparison, an all-against-all BLAST search takes
19 min, while d2 cluster uses about 20 min on the same
data set on an 866 MHz CPU (Groenewald, personal
communication).

In order to measure scalability, the program was run
on a data set consisting of 1250, 2500, and 5000 of
the sequences, in addition to all 10 000. Timing for the
dominating parts, the suffix array construction and suffix
extraction (including data reading) is shown in Figure 2.
While suffix extraction is almost perfectly linear, suffix
array construction is slightly worse than linear.

Running UIcluster on the benchmark set completed in
less than 30 s, which is quite impressive. When measuring
scalability as described above, it follows a quadratic curve
closely; it may scale better for data sets that result in fewer
clusters, however.

Sensitivity and specificity in pair detection
We note that for the algorithm to be able to produce
a particular (e.g. the ‘correct’) clustering, we need to
generate enough pairs that the correct clusters can be
constructed—in other words, there must exist a chain
of sequences that match between any pair of sequences
within a cluster. More formally stated, for each pair (x, y)

of sequences that should be clustered, there must exist a
set of pairs (xi , yi ) for i = 1, 2..s, so that x1 = x , ys = y
and xi+1 = yi in the pair generation stage.

Note that this is a necessary, but not sufficient condition;
there may be additional pairs generated that span clusters,
which again may result in ‘over-clustering’.

Similarly, whether the detected pairs are used in the
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Fig. 3. The total number of matches found, the number of resulting
unique sequence pairs, and the number of ‘true’ pairs produced (i.e.
where both sequences are in the same d2 or BLAST cluster).

final clustering will depend on their final score. Thus,
even if the set of detected pairs is sufficient, the resulting
clustering may differ from the correct one.

As a way of measuring sensitivity, we can see whether
enough pairs are produced to connect the sequences within
each cluster, and as a specificity measure, we can measure
the fraction of pairs produced that do not cross cluster
boundaries.

In Figure 3, we see that while the number of pairs
generated grows faster than exponentially as block size
decreases, the number of ‘true positives’, i.e. pairs that
are internal to a BLAST or d2-based cluster, grows much
more slowly.

Another interesting property is the relative redundancy
of matches, represented by the distance between the two
upper graphs. At a block size of 40, we have about twice
as many matching blocks as sequence pairs (i.e. each
sequence pair has an average of two distinct blocks that
match). As the block size decrease, the average number
of matching blocks per sequence pair increases as well,
until the number of distinct sequence pairs start to rise
sharply (at a block length of about 16). This could be
interpreted as a measure of quality; a high number of
blocks per sequence pair means that the pairs represent
real similarities, rather than being due to random matches.

This view is reinforced when taking into account the
fraction of detected sequence pairs being inside reference
clusters. The ‘true’ pairs make up a large portion of the
detected matches until block sizes decrease below 20 or
so, at which point the fraction quickly diminishes.

While we have a measure of ‘true positives’ detected
by our algorithm, a corresponding measure of ‘false
negatives’, i.e. pairs that are similar but fail to be detected,
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Fig. 4. The Jaccard index with block size 20.

is harder to calculate. The clusterings contain information
about which sequences are clustered together, but not
information about which pairs of sequences that match.
Thus, we cannot compare the detected pairs directly, and
comparing the resulting clusters (see the next section)
is at any rate a more relevant measure for determining
clustering quality.

We can, however, get an indication on the sensitivity of
the pair detection by examining at which block lengths we
no longer have enough matches to connect all reference
clusters. Experiments show that for the most aggressive
choice of parameters tested (block size 12, cluster thresh-
old 32), there are no clusters from neither the d2 nor the
BLAST-based clusterings that are split up. Indeed, this
holds true for choices of block size up to 16.

Clustering quality
The Jaccard index (Jain and Dubes, 1988) is a measure of
cluster similarity. It assigns to a the number of sequence
pairs where the sequences are in the same cluster in both
clusterings, and to b the number of pairs where sequences
are in the same cluster in the first but not the second
clustering, and to c the number of pairs where sequences
are in the same cluster in the second, but not the first. The
Jaccard index is then defined as the number a

a+b+c .
In Figure 4, we plot the Jaccard indices for various

clustering thresholds with a block size of 20, measured
against the output from d2 cluster, BLAST clustering, and
UIcluster.

We see that all clusterings reach a plateau for clustering
thresholds of 45–50 and up. The closest clustering is
d2 cluster, reaching a peak of 0.947 for a threshold of
72. The BLAST based clustering is also close with a
maximum of 0.864 for a threshold of 94, with UIcluster
less similar, with it’s best value, 0.564, at 78.
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Fig. 5. Counting the number of exactly matching clusters with block
size 20.

Table 1. The similarity between clusterings, with the number of clusters on
the diagonal, the Jaccard index in the upper half, and the number of exactly
matching clusters in the lower half

20/72 D2 BLAST UI UG

20/72 8103 0.947 0.854 0.560 0.503
D2 7975 8118 0.865 0.559 0.494
BLAST 7792 7812 8298 0.537 0.473
UI 7638 7631 7672 8419 0.307
UG 1629 1619 1578 1458 2910

Another measure, used by Burke et al. (1999), is the
number of exactly matching clusters, as well as clusters
in one clustering consisting entirely of a set of clusters
in the other. The number of exact clusters compared to
the other clusterings is shown in Figure 5. Again, we see
that we are closer to d2 cluster than to the BLAST based
clustering. The number of exact clusters grows steadily,
peaking at 7999 exactly matching clusters for a threshold
of 88 for d2, and 7876 clusters for BLAST at 98 and 100.
UIcluster’s closest value is 7731 for a threshold of 100.

Table 1 shows a comparison between the different
clusterings using a block size of 20 and a clustering
threshold of 72. UniGene is also included, but as it does
not contain all of the benchmark sequences, and as it
contains additional sequences that can impact clustering,
these values are, at best, only indicative. However, the
values give an indication of the level of agreement
between the different clusterings.

Again, the proximity of d2 and the present algorithm
is underscored, while d2 is marginally closer to BLAST-
based clustering.
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DISCUSSION AND CONCLUSION
The current prototype implementation runs with per-
formance comparable to or better than d2 cluster and
BLAST-based clustering, as long as block sizes are larger
than 12.

Short block sizes produce a large number of false
positives, and the clustering quality as well as performance
appears to be much better for larger block sizes.

While UIcluster is remarkably fast, the comparison to
the more well-evaluated methods indicates that the quality
is inferior. Pedretti points out some weaknesses of the im-
plementation in his honors project (http://genome.uiowa.
edu/pubsoft/clustering/uicluster.doc) that support this ob-
servation.

Scalability for our algorithm appears to be close to
linear in practice, and implementing the performance-
critical parts of the algorithm in a lower level language
with more focus on optimization should result in a
noticeable constant factor speedup. The critical parts of the
algorithm also lend themselves to parallel implementation.
The combination of these properties suggests that a tool
capable of clustering of the complete set of human
ESTs available from public databases using reasonable
computing resources may be within reach.

When comparing with the established algorithms, the
choice for block size appears to be optimal in terms of
clustering quality between 18 and 30. This is probably best
interpreted as a consequence of real similarities producing
longish matching regions containing matches separated by
short gaps, while in some cases, the algorithm identifies
short matching blocks separated by large gaps.

The current algorithm does not use gap penalties or other
refinements, these options should be explored in the future
in order to provide better specificity while maintaining
high sensitivity.
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