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ABSTRACT
Motivation: EST sequences constitute an abundant, yet error prone
resource for computational biology. Expressed sequences are import-
ant in gene discovery and identification, and they are also crucial for
the discovery and classification of alternative splicing. An important
challenge when processing EST sequences is the reconstruction of
mRNA by assembling EST clusters into consensus sequences.
Results: In contrast to the more established assembly tools, we
propose an algorithm that constructs a graph over sequence frag-
ments of fixed size, and produces consensus sequences as traversals
of this graph. We provide a tool implementing this algorithm, and
perform an experiment where the consensus sequences produced
by our implementation, as well as by currently available tools, are
compared to mRNA. The results show that our proposed algorithm
in a majority of the cases produces consensus of higher quality
than the established sequence assemblers and at a competitive
speed.
Availability: The source code for the implementation is available
under a GPL license from http://www.ii.uib.no/∼ketil/ bioinformatics/
Contact: ketil@ii.uib.no

INTRODUCTION
ESTs are produced by one-shot sequencing of cDNAs produced by
cloning mRNA. The sequences are easy to produce, and are a useful
and versatile resource of gene sequence data. However, they are
prone to sequencing errors and vector sequence contamination, and
methods for EST analysis need to take this into account.

In order to reconstruct the original mRNA, EST analysis nor-
mally entails a clustering stage—attempting to group ESTs accord-
ing to originating gene, followed by an assembly or consensus
stage—aiming to determine for each cluster one or more consensus
sequences to which the sequences can be globally aligned. Ideally,
one consensus sequence is produced for every mRNA isoform of the
gene, but in practice, low coverage regions and high error rates make
this goal difficult to attain.

Recent works (Mironovet al., 1999; Modrek and Lee, 2001) indic-
ate that alternative transcripts are very common, and consequently,
we must expect ESTs in a cluster to contain fragments, not only from
a single correct mRNA sequence, but from several equally correct,
related sequences.

∗To whom correspondence should be addressed.

The presence of multiple correct assemblies contributes to mak-
ing the assembly of EST data inherently different from assembling
genomic DNA.

In addition, EST data are generally considered to be more prone to
sequencing errors. However, compared to genome assembly, repeats
are less of a problem for assembling an individual gene, since the
coding sequence of a gene is unlikely to contain repeats. (It is still
an important consideration for ESTclustering, of course.) The EST
assembly problem is thus different enough from genomic assembly
to warrant specialized tools (Perteaet al., 2003).

The classical approaches to sequence assembly use the ‘overlap–
layout–consensus’ approach; that is, they use pairwise sequence
alignments to find a best fit, and build contigs by merging sequences
that overlap.

In the ideal case, we can construct a directed graph where
each sequence is a vertex, and edges represent overlaps between
sequences; i.e. there is an edge froms1 to s2 if and only if a suffix of
s1 matches a prefix ofs2. A correct assembly of the set of sequences
is then constructed by finding a Hamiltonian path through this graph.

There exist many sequence assemblers that can be used for con-
structing consensus sequences of ESTs. Some of the more popular
are Phrap (Green, 1996), the TIGR Assembler (Suttonet al., 1995)
and CAP3 (Huang and Madan, 1999). Lianget al. (2000) provide a
thorough comparison of these tools for the EST clustering problem.
However, common to all of these is that they are primarily designed
for assembling genomic sequences, rather than ESTs, and recent
efforts to improve the state of the art in sequence assembly tend to
specialize even more for the genomic assembly problem (Batzoglou
et al., 2002; Jaffeet al., 2003; Myerset al., 2000).

A different approach to sequence assembly is based on finding
Eulerian paths in a graph. Based on work on ‘sequencing by hybrid-
ization’, the idea is to break down sequencing data into fixed length,
overlapping fragments, ork-tuples (Idury and Waterman, 1995). It
is then possible to extract a consensus sequence as a path through
a graph over these fragments. However, this graph is complicated
by read errors, and effective algorithms to eliminate these errors are
essential (Pevzneret al., 2001).

The advantage of this method is partly efficiency, since it computes
the assembly by finding an Eulerian path through a graph, which is
computable in linear time, while computing the assembly from the
overlap graph is NP-complete (the Hamiltonian path problem).

Since the ESTs in a cluster corresponding to a gene originate
from multiple but related mRNA sequences, the graph resulting
from applying this approach will partly be determined by the splice
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structure of the gene, and is consequently sometimes referred to as
a splice graph (Heberet al., 2002).

A splice graph is thus in itself a very descriptive way to present a
cluster of ESTs, and can be more revealing of the underlying splice
structure than assembled consensus sequences. However, as most
tools deal with sequences rather than graphs, it is for many purposes
still preferable to represent clusters as consensus sequences.

In the following we present an alternative algorithm for construct-
ing EST consensus sequences. Similarly to the other graph based
approaches, we construct a graph over sequence fragments repres-
enting the data set. However, we use a different algorithm that does
not explicitly try to construct an Eulerian path, nor calculate sequence
alignments or overlaps. Instead we traverse the graph greedily, trying
to pursue a path through the graph so that each branch followed is as
consistent with the previous one as possible.

A complete EST analysis process incorporates many stages, from
base calling, quality and vector clipping, and repeat masking, through
sequence clustering and assembly, to analysis and detection of tran-
scriptional features like SNPs and splice variants (Staden, 1996;
Chevreuxet al., 2004). We therefore wish to emphasize that the
present algorithm and tool only deals with the sequenceassembly
stage, and that other tools must be used for the other parts of the EST
analysis tool chain.

BACKGROUND
We define aword graph for a data setS ⊂ �∗ and with word length
k as a directed graph(V ,E) where the set of nodesV is the set
of all (k − 1)-words inS, the edgesE = {(xw,wy)|x,y ∈ �,
xwy is ak-word inS}.

For our purposes,S is a set of sequences over the alphabet
� = {A,C,G,T }, and then nodes then represent all length(k − 1)-
substrings, while edges represent the lengthk substrings of the
sequences inS. We also define theweight of an edge as the number
of sequences inS containing the word represented by the edge. [The
word graph is a subgraph of thede Bruijn graph; see, e.g. Skiena
and Sundaram (1993) for a more elaborate description.]

Different features of the data set will give rise to corresponding
properties of the word graph. For example, a single read error will
cause the word graph to branch into paths that merge again after
k nodes. Since the chance for the same random error occurring in
the same position in two sequences is very low, we expect one of
the paths to have a weight of one, and given good coverage, the
path representing the correct sequence to have a higher weight. For
non-random polymorphisms, it is more likely that the different paths
will be supported by several sequences. In addition, if anyk-word
occurs more than once in a sequence, it will lead to a cycle in the
graph.

Word graphs for real data will be complicated by the combination
of these features, and the ‘raw’ graph often becomes a complex tangle
of edges, something that moderated the success of the early Eulerian
graph sequence assemblers (Pevzneret al., 2001).

The present algorithm does not try to construct an Eulerian graph,
but instead takes into account the weight of edges to eliminate read
errors.

ALGORITHM
Based on the word graph for a set of sequences, we construct con-
sensus sequences by findinggreedy paths through the graph. The

graph is traversed, trying to follow edges so that the path is consistent
with at least a subset of the sequences.

The algorithm takes as a parameter the minimum weight threshold,
which indicates the number of sequences that need to support a par-
ticular edge in the graph in order for us to consider it reliable—or
in other words, if the number of sequences supporting an edge is
lower than this threshold, we suspect it is due to sequence errors,
rather than actual sequence differences. This threshold is used as a
stop criterion; when no edges with weights exceeding the threshold
remain, the algorithm terminates.

Given a word lengthk, the algorithm starts out by constructing the
correspondingk-word graph. The graph is then examined to identify
the heaviest edge—i.e. thek-word occurring in most sequences—and
the set of sequences supporting it.

We can now construct thegreedy path in each direction by travers-
ing the graph until we reach a junction. For each branch out of the
junction, we examine the set of sequences supporting it. We select
the branch supporting most of the sequences that also support the
heaviest edge.

At the next junction, we again examine the set of sequences sup-
porting each branch, and select the one supporting most of the
sequences that supported the previously taken branch. This process
is repeated, until we reach a node with no outgoing edges.

One problem that arises is the presence of cycles in the graph. If
a word is repeated in a consensus sequence, we risk the danger of
looping infinitely. This situation is avoided by maintaining a map
of the current position in the sequences. When the consensus is
extended, only sequences where the extension would increase the
current position are taken into account. This allows the consensus
sequence to contain multiple occurrences of the same word, but only
if it can be represented by different positions in the sequence data.
The map is also used in branch selection, gradually increasing the
weight of sequences that align well to the consensus. If a word occurs
multiple times in a sequence, its position cannot be unambigously
determined in that sequence. In order to avoid this ambiguitiy, the
selection of starting point penalizes the weight of multiply-occurring
words.

When the greedy path cannot be extended in either direction, it
is returned as a consensus sequence, and the next path can then
be constructed, starting from the heaviest edge not in any previous
sequence.

We used this algorithm to implement an experimental transcript
assembly/consensus tool,xtract. In this implementation, the word
graph is represented by a finite map (a.k.a. dictionary), mappingk-
words to sequence and position pairs. This makes it fast [anO(logn)

operation] to check whether a givenk-word exists, and to retrieve
the list of occurrences in the data set.

Nodes and edges in the word graph can be extracted from this
structure; eachk-word entry represents an edge from the (k − 1)-
prefix to the (k− 1)-suffix of the word; the nodes can be inferred
implicitly from the edges.

The implementation was written in Haskell and compiled with the
GHC compiler.

RESULTS
Since UniGene (Boguski and Schuler, 1995) contains both cDNA
ESTs as well as full-length mRNAs, we decided to test the accur-
acy of our assembly algorithm on the ESTs and use the mRNA as
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Fig. 1. The distribution of cluster sizes.
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Fig. 2. The number of contigs produced by each sequence assembler plotted
against cluster sizes. The line labeledunique is the number of sequences after
redundancy has been eliminated withcd-hit (see Discussion). The largest
clusters are not shown in the diagram due to space constraints.

reference. In most cases, sequences are annotated as either mRNA or
cDNA, sequences with neither designation being treated as cDNA.

We extracted the 20 427 sequences contained in the first 100
UniGene clusters (Boguski and Schuler, 1995), and masked them
using RepeatMasker. Since UniGene uses annotation in addition to
sequence information when producing the clustering, the sequences
were reclustered based on sequence information only, using xsact
(Maldeet al., 2003), with a block size of 20 and a match threshold of
75 (i.e. sequences are clustered together if they have exactly matching
blocks of length 20 or more, whose sum of lengths is at least 75).

The full length mRNAs (274 sequences, identified by annota-
tion) were then removed from the clusters, leaving only the EST
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Fig. 3. Running times for each sequence assembler plotted against cluster
sizes. The largest clusters are not shown due to space constraints.

Fig. 4. The ranks of best contig matching each mRNA for each of the
sequence assemblers.

sequences. The largest cluster was comprised of approximately 7500
sequences and 64 mRNAs. The complete distribution of cluster sizes
is shown in Figure 1.

We then ran Phrap, TIGR and CAP3, as well as our algorithm on
each of the resulting clusters. For easy comparison, all computations
were performed on a Sun Fire 880 computer.

For each cluster, the number of contigs produced by the different
programs is presented in Figure 2. The running time of each sequence
assembler was measured, and the results are presented in Figure 3.

For each cluster, we compared all the produced contigs against
the mRNAs in the cluster. We extracted from the output of each
assembler the contig with the highest BLAST bitscore to the mRNA
and ranked them. In the case of ties, contigs producing the same
score were given the same rank. The ranks were counted for each
assembler, and the results are displayed in Figure 4.

The aligment of the consensus sequences for one of the clusters
in the data set is shown in Figure 5. Only CAP3 and xtract manage
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Fig. 5. Alignment of the best-matching consensus sequences against AL832407. The thick regions indicate matches, solid lines indicate non-matching regions,
and stippled lines (in the CAP3 and TIGR outputs) indicate parts of the transcript that are missing from the consensus sequences.

to reconstruct most of the transcript, and CAP3 has a gap of 195
bases. The contig produced by xtract matches the reference exactly,
CAP3 has 2 single-nucleotide errors, TIGR has 13, and Phrap has
17 single-nucleotide errors in the matched regions (not shown).

DISCUSSION AND CONCLUSIONS
We see from Figure 2 that Phrap and CAP3 produce a relatively low
number of consensus sequences, while our algorithm and even more
so, the TIGR assembler, produces a much larger amount. In many
cases, TIGR is close to one contig for every two sequences in the
data set. This likely reflects different goals; in particular, xtract will
often generate different contigs for SNP variants in the data.

From Figure 3 we see that TIGR and Phrap are very fast, CAP3
is very slow, and our algorithm fluctuates in the middle, generally
about twice as fast as CAP3.

The histogram in Figure 4 shows that in a majority of the cases
(232 out of 272, or 85% of the total), our algorithm either produced
the best contig or tied for the first place.

CAP3 is a clear second with highest-scoring contigs in 144 cases
(53%). Among these were a surprisingly high number of ties (128
cases) where it scored the same as our algorithm, so it only succeeded
in producing abetter scoring contig in 16 cases. Both TIGR and
Phrap score relatively poorly in our benchmark, with 25 (9%) and 29
(11%) first places, respectively (and roughly half of these were ties
with another assembler, sometimes with all four, indicating clusters
that are relatively easy to assemble correctly). This agrees well with
the results published in Lianget al. (2000).

Since our algorithm will produce a set of transcripts so that every
word in the input data with sufficient weight is contained in at least
one consensus sequence, the number of sequences produced can be
large. In order to get a set of consensus sequences more in line with
the output of CAP3 and Phrap, we need to reduce the redundancy in
the sequences produced by our algorithm. One way to do this is to
use cd-hit (Liet al., 2001), which reduces a set of sequences to a set
of representative sequences, eliminating sequences that have a high
degree of similarity to the representatives.

As an experiment, we clustered the consensus sequences with
cd-hit, and measured the quality and the number of contigs, as
above. The results are presented in Figures 6 and 2. Running
cd-hit was quite fast, and it processed the whole data set in about
a minute.

We see that while the number of cases where our algorithm
produces the best-scoring contig is reduced, our algorithm still

Fig. 6. The ranks of best contig, after processing redundant contigs with
cd-hit.

outperforms CAP3, while the number of remaining contigs is more
within the range of CAP3 and Phrap.

While cd-hit is effective in removing a large amount of redund-
ancy from the data set, it would probably be worthwhile to integrate
this functionality in the algorithm itself, in order to be able to bet-
ter identify potential SNPs, alternative splice variants and other
transcript features.

The running time of the algorithm scales proportionally to the
output sequence size (each graph traversal is linear in its length, with
logarithmic factors in the graph size). Thus, generating sequences
that later will be eliminated is costly, and a modified algorithm that
ignores small sequence differences to produce a less redundant set of
consensus sequences, should be much faster. As the current algorithm
keeps track of where the generated consensus sequence matches the
input data, it should be relatively easy to detect potential SNP sites as
words occurring in multiple sequences matching a consensus well,
but not themselves being part of the consensus.

We believe this experiment shows that this algorithm achieves
better quality assemblies than more traditional approaches, with
competitive running times.
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