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ABSTRACT

Motivation: Repeat sequences in ESTs are a source of problems, in

particular for clustering. ESTs are therefore commonly masked against

a library of known repeats. High quality repeat libraries are available

for the widely studied organisms, but for most other organisms the lack

of such libraries is likely to compromise the quality of EST analysis.

Results:Wepresenta fast, flexibleand library-lessmethod formasking

repeats in EST sequences, based on match statistics within the EST

collection. The method is not linked to a particular clustering algorithm.

Extensive testing on datasets using different clustering methods and

a genomic mapping as reference shows that this method gives results

that are better than or as good as those obtained using RepeatMasker

with a repeat library.

Availability: The implementation of RBR is available under the terms

of the GPL from http://www.ii.uib.no/~ketil/bioinformatics

Contact: ketil.malde@bccs.uib.no

Supplementary Information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Expressed Sequence Tags (ESTs) are a valuable source of informa-

tion that allows identification of genes in sequenced genomes. In

addition, they provide a low-cost approach to mapping the gene

complement of organisms for which genome projects are still too

expensive. Clustering ESTs and assembling consensus sequences

can reveal important information about the transcriptome, including

splice variants and putative single nucleotide polymorphisms

(SNPs).

The clustering procedure is based on identifying matches between

the ESTs and grouping together sequences with sufficient overlaps.

Repeats, in the form of sequencing artifacts, contamination, low

quality sequence and genomic repeats, represent a serious problem

for clustering, as they can occur in otherwise unrelated sequences.

Matches resulting from repeats may lead to erroneously grouping

ESTs that arise from different genes, and it is therefore important to

mask repeats prior to clustering.

We have previously developed RepeatBeater (Schneeberger et al.,
2005) and shown that it successfully masks repeats and improves the

accuracy of clustering. In this paper we present a new method named

RBR that is conceptually simpler than RepeatBeater, and while

RepeatBeater was tightly coupled to xsact (Malde et al., 2003),
RBR works independently of clustering method.

To analyze the effectiveness of RBR, we use several represent-

ative datasets of realistic sizes. We construct reference clusterings

by mapping all ESTs to the genomic sequence, retaining only

sequences that can be mapped unambiguously and grouping

ESTs whose genomic matches overlap.

By comparing with the reference clusterings, we show that RBR

produces results that are at least as good as those produced by the

most widely used library-dependent repeat masking methods. Even

for the set of human ESTs it gives results superior to those produced

by methods using human repeat libraries. For some organisms, the

results are dramatically improved over those produced by existing

methods.

1.1 Existing methods

There are currently two main approaches to masking EST data.

Library-based masking identifies undesired sequence parts by com-

paring with a library of known repeats. Autonomous masking iden-

tifies undesired sequence from properties of the sequence itself.

Repetitive regions often constitute large parts of a genome, and

some classes of complex genomic repeats, like those originating

from transposon and retrotransposon activity or retroviral elements,

are collected in libraries which can then be used for masking.

While libraries derived from the genome are commonly used

for masking ESTs, they are not targeted specifically at transcripts.

For instance, LINE transposons normally contain genes, and for the

purpose of EST clustering, the copies will either be treated as a

single gene or as multiple homologues. Some transposons do cause

problems, for instance the short SINE/Alu repeat is found in human

ESTs (Schneeberger et al., 2005).
In EST data, there are also vector sequences and genomic

contamination from the host organism, typically Escherichia
coli. Similar to genomic repeats, these can be masked using a

library.

Genomic repeats are in general organism specific. For novel

organisms, where the genome is not yet available for constructing

a good repeat library, effective masking of genomic repeats is

difficult.

Autonomous masking typically deals with simple repeats, which

consist of contiguously repeated short subsequences (2–4 nt) often

caused by polymerase slippage, and low complexity regions

(LCRs), which are regions containing an overabundance of some

nucleotides. In addition to poly-A tails, which can be considered a

special case of either type, these repeats are common in the UTR

regions of genes.�To whom correspondence should be addressed.
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The accuracy of base calling tends to deteriorate towards the ends

of the ESTs (Liang et al., 2000; Ewing and Green, 1998), and

the error rate increases until at some point the remaining sequence

is noise. These low-quality sequence parts are commonly trimmed.

Usually a cut-off is set from quality values determined by the base-

calling software, but heuristics using only the sequence exist.

RepeatMasker (Smit et al., 2004) is probably the most widely

used tool for masking against a library (typically interspersed

repeats and E.coli and vector sequences), and by default uses

cross_match (P. Green, unpublished data) to identify matches.

It also masks LCRs. RepeatMasker is distributed (and normally

used) with the RepBase (Jurka et al., 2005) repeat library.
One popular utility for autonomous masking is mdust from

TIGR, which implements the DUST algorithm (R. L. Tatusov

and D. J. Lipman, unpublished data). Other alternatives include

DustMasker (Morgulis et al., 2006) and SeqClean (G. Pertea,

unpublished data), the latter combines autonomous masking with

optional masking against a library. Search and alignment programs,

like BLAST (Altschul et al., 1990) and BLAT (Kent, 2002), often

incorporate autonomous masking as well.

There appears to be little consensus on a ‘best practice’ of steps to

apply. TGICL (Pertea et al., 2003), a widely used EST analysis

pipeline from TIGR, uses mdust to mask sequences for low com-

plexity before clustering and assembly, but does not mask against

genomic repeats.

Other pipelines (e.g. Krause et al., 2002; HarvESTer from Bio-

Max Informatics AG, München) use either RepeatMasker or similar

library-based masking (e.g. Pontius et al., 2003; Miller et al., 1999;
D’Agostino et al., 2005) in addition to autonomous masking.

2 METHODS

RBR identifies repeats by first calculating the frequencies of word occur-

rences in the entire dataset. Then, for each sequence the frequencies of

the words it contains are collected, and a threshold is determined based

on these frequencies. Sequence positions corresponding to frequency

peaks above this threshold are then masked. RepeatBeater (Schneeberger

et al., 2005) used a similar approach, but its algorithm is more complex, and

as the implementation relies on pre-processing the sequences with xsact, it

is slower and more complicated to use.

2.1 The RBR algorithm

Given a word size k, RBR first calculates the frequency of every k-word in

the full dataset. For each sequence, the distribution of word frequencies is

collected, and the baseline for the sequence is estimated. Words with

frequencies significantly above this baseline are then masked as repeats.

In addition to the word size k, the algorithm takes additional parameters

s, specifying the stringency of the baseline estimate, and d, specifying the

threshold’s offset from the baseline.

In the absence of repeats or read errors in the sequences, and with the

sequences uniformly distributed over the originating gene, we expect

the distribution of word counts to approximate a binomial distribution.

To see this, let n be the number of sequences whose origin in the genome

overlaps the origin of a given sequence S, and p be the average fraction of

this overlap. For each position in S, the probability of one particular sequence
overlapping it in that position is p, and as there are n sequences, we get a

distribution of Bðn‚pÞ. Furthermore, from the assumed uniform distribution,

and with the added assumption that sequences have similar lengths, we

expect p to be 0.5.

In practice sequences vary in length and quality, and the distribution

is non-uniform. Therefore the assumptions above lead to only an

approximation of the actual distribution. Instead of assuming a fixed p,
we estimate the distribution empirically.

The variance s2 of the binomial distribution Bðn‚pÞ is npð1 � pÞ, and
thus the standard deviation grows with the square root of the mean. We

therefore start by identifying the modal interval ðm �
ffiffiffiffi
m

p
/2‚mþ

ffiffiffiffi
m

p
/2Þ

containing the maximum number of word occurrences.

For a binomial distribution, we can estimate 1 � p from the empirical

variance and mean as q̂q ¼ ŝs2/m̂m. We adjust the interval around m so that

estimated q̂q for the frequencies in the interval is equal to the stringency

parameter s. This distribution is used as the baseline to mask all words in the

sequence with frequencies above m̂m þ dŝs .

2.2 Constructing reference clusterings

When each EST contains enough non-repeat sequence to determine its

position in the genome, the ESTs can be clustered by location, which greatly

reduces the effect of any repeats. The result is similar to a clustering based on

EST sequence similarity alone when the ESTs are masked optimally, and

we use this to serve as a reference for comparing maskings (Kalyanaraman

et al., 2003; Wang et al., 2004; Wu et al., 2004; Wu and Watanabe, 2005).

We emphasize that this is only a coarse approximation to the biological

transcripts, for example, incompleteness, sense-antisense transcription

(Shendure and Church, 2002; Yelin et al., 2003) and trans-splicing events

(Huang and Hirsh, 1992) will still contribute to inaccuracies in the clustering.

To assess RBR’s performance, we developed GEM, a system for

clustering ESTs based on overlap in genomic position. It uses BLAT

(Kent, 2002) to determine a spliced alignment to the genome, and has several

parameters to set criteria for the clustering.

To verify that RBR is able to identify and eliminate repeats, we used a set

of 1 355 human ESTs taken from a cluster known to contain multiple genes

SINE/Alu repeat (Schneeberger et al., 2005). The sequences were mapped to

the human genome using GEM, resulting in 339 distinct clusters.

We also mapped 50 000 ESTs from Oryza sativa, and 100 000 from each

of Caenorhabditis elegans and Arabidopsis thaliana to their respective

genomes using GEM.

In order not to end up with artificially clean datasets, we used relatively

lax parameters (90% sequence similarity and 75% of the sequence length) to

match ESTs against the genome and discarded sequences that matched

multiple locations equally well. The ESTs were then clustered if they over-

lapped 20 nt or more in the matches against the genome.

The resulting data sets contained 47 302 ESTs fromO.sativa, 84 655 ESTs

from C.elegans, and 97 919 from Arabidopsis.

2.3 Comparing clusterings

Many of the commonly used indices for comparing clusterings are based

on categorizing and counting pairs of clustered objects. Specifically, for a

set of objects fx1‚x2‚. . .‚xng, and clusterings K and C, we denote by C(xi)

and K(xi) the clusters containing xi in C and K, respectively. We then define

four variables

a ¼ jði‚ jÞ where CðxiÞ ¼ CðxjÞ‚KðxiÞ ¼ KðxjÞj

b ¼ jði‚ jÞ where CðxiÞ ¼ CðxjÞ‚KðxiÞ 6¼ KðxjÞj

c ¼ jði‚ jÞ where CðxiÞ 6¼ CðxjÞ‚KðxiÞ ¼ KðxjÞj

d ¼ jði‚ jÞ where CðxiÞ 6¼ CðxjÞ‚KðxiÞ 6¼ KðxjÞj,

where 1 � i < j � n.

Many cluster indices can then be calculated from these variables. In

particular, the Jaccard index (Jain and Dubes, 1988) is defined as

J ¼ a

aþ bþ c
:
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One problem with Jaccard, and indeed with all the measures based on

counting pairs, is that modifications to large clusters will affect the score

much more than modifications to small clusters.

A different approach that suffers less from this drawback is based on

entropy. Meila (2005) introduces the variation of information VI to compare

clusterings. For two clusterings K and C, VI is defined as

VIðC‚KÞ ¼ HðC‚KÞ � IðC‚KÞ

where HðC‚KÞ is the total entropy of the clusterings, and IðC‚KÞ denotes

the mutual information, defined as IðC‚KÞ ¼ HðCÞ þ HðKÞ � HðC‚KÞ.
The confusion matrix M is the c · k matrix defined by Mi‚ j ¼ jCi \ Kjj.

If we define Mi · ¼
P

j Mi‚ j and similarly, M · j ¼
P

i Mi‚ j, we have the

following definitions

HðCÞ ¼
X
i

Mi ·

n
log

Mi ·

n

HðKÞ ¼
X
j

M · j

n
log

M · j

n

HðC‚KÞ ¼
X
i‚ j

Mi‚ j

n
log

Mi‚ j

n

VI can now be calculated directly from M as

VI ¼ 1

n

� X
i

Mi · logMi · þ
X
j

M · j logM · j � 2
X
i‚ j

Mi‚ j logMi‚ j

�

We believe VI is a more appropriate measure, but for consistency with

previous work, we will also provide the Jaccard index.

3 RESULTS

We have selected two parameter settings for RBR, the default

configuration of s ¼ 1.5 and d ¼ 6, and a more aggressive config-

uration, using s ¼ 1 and d ¼ 4. We also masked the datasets with

RepeatMasker, masking with lower case letters using the -xsmall

option, and supplying the appropriate -species parameter.

TGICL pre-processes sequences with mdust, and uses Mega-

BLAST (Zhang et al., 2000) to identify matches, using exactly

matching words of length 18 to seed pairwise alignments. Lower

case letters are interpreted as masked sequence and excluded from

the seeding, but not from the subsequent alignment. For clustering,

we ran TGICL with its default parameters, and xsact with a word

size (-k option) of 25 and a threshold (-n) of 60.

3.1 Human dataset

To verify that RBR produces a result similar to RepeatBeater, we

first ran RBR on the set human ESTs. Using the default configura-

tion, RBR masks 4.6% of the nucleotides differently from Repeat-

Beater. Comparing RBR to RepeatMasker results in a difference of

7.8%, while comparing RepeatBeater with RepeatMasker gives 7%

differently masked nucleotides (Schneeberger et al., 2005). Thus,
RBR and RepeatBeater are more similar to each other than either is

to RepeatMasker.

From Figure 1 we see that RepeatMasker masks a relatively large

part of the human dataset. A large fraction of the masked nucle-

otides are masked as SINE/Alu repeats, and these repeats constitute

almost all nucleotides that are masked by both methods (6.3%

versus 6.4%).

RBRmasks a smaller amount of sequence, but with a large degree

of overlap, and the differences are mainly owing to RBR only

masking the most conserved parts of the repeats. In particular,

only two sequences in the dataset are masked by RepeatMasker

without being masked by RBR, and they turn out to contain

be duplicates of the same sequence. Most of the sequence

masked by RBR but not RepeatMasker is low complexity and

simple repeats, either too short or too ‘noisy’ to be detected by

RepeatMasker.

We also compared the clusterings obtained by running TGICL

and xsact on the masked sequences with the clusterings obtained

by mapping the ESTs to the genome using GEM. The results are

displayed in Figures 2 and 3.

We see that the performance of both TGICL and xsact is poor

on the unmasked data. The two maskings using RBR and the mask-

ing using RepeatMasker lead to similar clusterings, indicating that

although RBR does not mask all SINE/Alu repeats, it masks it to

the extent it adversely affects the clustering.

3.2 Large datasets

To see how RBR performs on more realistic datasets, we processed

the larger datasets with RepeatMasker, mdust and RBR. The

fraction of masked sequence is given in Figure 4. On these sets,

RepeatMasker only masks a small fraction of the sequence data,

Fig. 2. Comparing the quality of clusterings using the different masking

methods on the human dataset. The results are measured using the Variation

of Information, using both xsact and TGICL for clustering. Lower scores

are more similar to the reference. Note that the bars are truncated where the

value exceeds one, and the correct value is given as a number.

RepeatMasker

RBR 1.5,6

RBR 1.0,4

3.9%

0.7%

0.8%6.4%

1.2%

Fig. 1. Venn-diagram showing the correspondence between the different

methods. A colour version of this figure is available as Supplementary data.
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comparable with mdust. RBR masks a similar amount of sequence

as it does on the human dataset.

Again we clustered the masked datasets with TGICL and

xsact, and compared with the clusterings derived from the

genomic mapping. The results are given as Variation of Information

in Figures 5 and 6, and Jaccard indices in Figures 7 and 8.

We see that TGICL performs well on C.elegans and O.sativa
using only the intrinsic masking. The Arabidopsis dataset, however,
is markedly improved using RBR. For xsact, the clusterings

generally see an even greater improvement.

4 DISCUSSION AND CONCLUSION

Except for the human dataset, which was selected explicitly for

containing a known repeat, masking against genomic repeats in

ESTs generally appear to have little effect on the clustering.

Transcript-specific repeat databases would likely improve this

situation, or at least reduce the amount of nucleotides masked

unnecessarily.

In our experiments, we find no case where using RBR signific-

antly worsens the results, and often the result is markedly improved.

We think RBR, or a similar tool, should become an important

element in EST analysis, complementing the standard approaches.

In particular for exploring new organisms, where no good repeat

library exists, we believe RBR provides the best available altern-

ative for masking ESTs.

Fig. 3. Comparing the clusterings for the human dataset using the Jaccard

index. Higher scores are more similar to the reference.

Fig. 4. Percentage of nucleotides masked for the larger datasets.

Fig. 7. Comparing clustering quality TGICL and the Jaccard index. Higher

scores are more similar to the reference clustering.

Fig. 5. Comparing clustering quality using TGICL on the large datasets using

the Variation of Information metric. Lower scores are more similar to the

reference clustering.

Fig. 6. Comparing clustering quality using xsact and Variation of

Information.
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Our implementation of RBR masks the C.elegans dataset in

16 min on a 2.4 GHz Athlon 64, consuming <500 Mb of memory.

Using word sizes >16 increases both time and memory consumption

somewhat.

Although we have addressed repeat masking only in the

context of EST clustering, we believe the method can be applied

to related problems. For instance, many genomes are available as

unassembled contigs, an approach similar to RBR could be used to

aid assembly, or alternatively, enable analyses using the unas-

sembled contigs directly.

4.1 Availability

RBR is licensed under the GNU General Public License, and can be

downloaded from http://www.ii.uib.no/�ketil/bioinformatics/downloads/

index.html.

The program that implements the Variation of Information

measure, the Jaccard index and several other cluster comparison

indices, is similarly licensed and available from the same URL.

The GEM clustering pipeline, the sequence data, and the resulting

clusterings are available on request.
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