
Using Bloom Filters for Large Scale Gene
Sequence Analysis in Haskell

Ketil Malde1 and Bryan O’Sullivan2

1 Institute of Marine Research, Bergen, Norway
ketil.malde@imr.no

2 Serpentine Green Design, San Francisco, USA
bos@serpentine.com

Abstract. Analysis of biological data often involves large data sets and
computationally expensive algorithms. Databases of biological data con-
tinue to grow, leading to an increasing demand for improved algorithms
and data structures. Despite having many advantages over more tradi-
tional indexing structures, the Bloom filter is almost unused in bioinfor-
matics. Here we present a robust and efficient Bloom filter implementation
in Haskell, and implement a simple bioinformatics application for indexing
and matching sequence data. We use this to index the chromosomes that
make up the human genome, and map all available gene sequences to it.
Our experiences with developing and tuning our application suggest that
for bioinformatics applications, Haskell offers a compelling combination
of rapid development, quality assurance, and high performance.

1 Introduction

A central part of bioinformatics involves work with biological sequences. These
sequences represent molecules of DNA, RNA, and protein, all of which are struc-
tured as long chains of smaller building blocks. For computational purposes,
these chains are usually represented as strings over fixed alphabets. For instance,
the nucleotides of DNA are represented using the alphabet of A (for adenine),
C (cytosine), G (guanine), and T (thymine).

Since the introduction of large-scale sequencing in the early 1990s, public se-
quence databases have doubled in size every 18 months. The U.S. National Cen-
ter for Biotechnology Information’s GenBank database now contains 110 million
nucleotide sequences, totaling 200GB of data1.

Over the past two decades, the cost of generating new sequences has dropped
by three orders of magnitude. As this trend is likely to continue, the rate
at which biological sequences are produced will increase dramatically. For in-
stance, the newest generations of pyrosequencing technologies produce hundreds
of megabytes of sequence data per run [19][23][7].

Much of bioinformatics research involves the development of “throwaway”
code that integrates preexisting components to create focused analytic tools that

1 http://www.nih.gov/news/health/apr2008/nlm-03.htm

A. Gill and T. Swift (Eds.): PADL 2009, LNCS 5418, pp. 183–194, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.nih.gov/news/health/apr2008/nlm-03.htm

184 K. Malde and B. O’Sullivan

have short lifespans. For many tasks, such as accessing and manipulating data
from the more than 1 000 known public databases [10], languages like Python
and Perl are widely used, with performance-critical analysis delegated to code
written in languages such as C and C++.

An ideal situation for bioinformaticians is to be able to develop new ana-
lytic tools rapidly, without sacrificing speed or correctness. With these goals in
mind, we used Haskell to prototype some novel uses of Bloom filters for sequence
analysis.

1.1 Sequence Similarity

The core of sequence analysis is the search for similarity between sequences.
Similarity provides the basis for many important tasks, for example:

– Genes are usually identified based on their similarity to known proteins and
gene transcripts.

– The sequencing process commonly produces only fragments of the true se-
quence. These fragments are clustered by similarity, and then assembled by
joining fragments whose ends are similar.

– Identifying similar regions of genomes from different organisms can reveal
evolutionary relationships between those organisms, and shed light on the
mechanisms of evolution.

Applications like these are ubiquitous. They are usually computationally expen-
sive due to the size of the data sets involved.

A commonly used metric for sequence similarity is the edit distance or Lev-
enshtein distance, which is the number of edit operations needed to transform
one sequence into another. The edit distance between two sequences n and m
can be calculated using dynamic programming in O(nm) time [11][22][20]. This
approach quickly becomes impractical for large sequences, and heuristic methods
are usually used instead.

1.2 Word-Based Approaches

Heuristic approaches typically start by identifying fixed-size exact matches, called
k-words2. Once a sufficient number of matches is identified, they are used as a
starting point (or seed) to construct a more accurate alignment or comparison
score.

The choice of k-word size is influenced by several factors. Sequences often
contain errors introduced by the sequencing process, or differ due to mutations.
Words should therefore be short enough that the number of false negatives is
reasonable. For instance, if the data have a (rather severe) error rate of 5%, a
word size of less than 20 will ensure that hits can be found. On the other hand,
shorter words are less likely to be unique in a data set, which increases the chance
of false positives. The inherent non-randomness of genes and genomes amplifies
this problem.
2 These are also known as q-grams, or k-tuples.

Using Bloom Filters for Large Scale Gene Sequence Analysis in Haskell 185

An index can store k-words either directly, using tables, or in a sparse data
structure. The simplest approach is to use each word as an index in a table of size
αk, where α is the alphabet size. This approach is used by e.g. blat [13], which
by default indexes words of length 11. To reduce the density of the index, blat

only indexes non-overlapping words and removes words that occur frequently in
the data set. As the table grows exponentially with word size, available memory
limits the possible word lengths. Although longer words are often desirable, to
make efficient use of memory they require sparse data structures like hash tables
or search trees. This incurs additional overheads in space and time.

1.3 Suffix Trees and Arrays

Suffix trees [25] and suffix arrays [18] provide interesting alternatives to word-
oriented indexing, as they allow searching for words of arbitrary length. They
form the basis of several tools for sequence analysis, e.g. [2][16][12]. While both
suffix trees and suffix arrays can be constructed in linear time, and can perform
lookups of a length-m string in O(m) time, this comes at a cost of about 12m
bytes per position with 32-bit pointers [1]. Suffix structures are thus memory
intensive. Unlike the word-based approaches, it is not straightforward to reduce
memory use by omitting frequent or overlapping words. In addition, while the
sensitivity of word-based indexing can be improved using gapped words [24], it
is not clear how to apply this approach to suffix structures.

1.4 Bloom Filters

The Bloom filter [4] is a set-like data structure that uses space efficiently. Unlike
a normal set data structure, its query operation is probabilistic: it may report
false positives. The error rate is tunable: an application that can tolerate a higher
error rate will consume less memory than one with stricter needs.

For example, to represent a 400 000-element set with a 1% false positive rate,
a Bloom filter will use 0.46MB of memory. If we reduce the false positive rate
to 0.01%, the space consumption doubles, to 0.91MB. The size of a Bloom filter
does not depend on the sizes of its elements. In our case, this property offers the
prospect of efficiently indexing long sequences.

A Bloom filter is implemented as an m-bit array and a family of h distinct
hash functions. The empty set is represented as a zeroed bit array. To add an
element, we compute h hashes over it. We use each hash value as an offset into the
array, and set each corresponding bit to 1. To query the set for membership, we
compute h hashes over the input. If any corresponding bit is not 1, the element
is not present in the array. False positives arise if distinct values hash to the
same offsets for all h hash functions.

Although Bloom filters are widely used in networking [5] and formal meth-
ods [9], they are almost unknown in bioinformatics. In the sections that follow,
we discuss their use to implement solutions to some typical bioinformatics prob-
lems, and investigate how they perform on massive data sets.

186 K. Malde and B. O’Sullivan

2 Methods

2.1 A Fast Bloom Filter in Haskell

We implemented a Bloom filter in Haskell. Our library is general purpose in na-
ture3, and provides typical Haskell interfaces to construct and query immutable
Bloom filters:

fromList :: (a -> [Hash]) -- family of hash functions
-> [a] -- elements to add
-> Bloom a

elem :: a -> Bloom a -> Bool

To achieve a false positive rate of 0.1% for an input list of known size, we use a
family of 10 hash functions. Building a Bloom filter requires many modifications
to a bit array, in this case 10 per element added. We use the ST monad [15] to
efficiently make in-place modifications to this bit array, then freeze it to present
an immutable interface to consumers of the library.

We avoid developing many independent hash functions by using Dillinger and
Manolios’s technique of double hashing [9]. We compute two hashes over a value,
and combine their results using cheap algebraic operations to produce further
hash values on demand. Although the resulting hash values are not independent,
analysis has shown them to provide good enough dispersion for practical use [14].

We double our hashing performance by computing both hashes in a single
traversal of an element, by using Haskell’s foreign function interface (FFI) to
invoke Jenkins’s hashlittle2 implementation4.

We also use a power-of-two table size, so that we can perform cheap bit-
manipulation operations to turn a hash value into a valid array index.

2.2 Indexing Sequences with Bloom Filters

We used the Bloom filter to implement a simple indexing scheme for biological
sequences. As with other indexing schemes, the sequences are cut into fixed-
length overlapping fragments that can be stored in the Bloom filter.

We allow a choice of word length and overlap (the distance between the be-
ginnings of successive words). These parameters can be tuned to optimize the
trade-off between sensitivity, specificity, and resulting index size. For instance,
given the sequence GATTACCA, a word length of 3, and an overlap of 2, the
index would store the three words GAT, TTA, and ACC. In our test application,
we use a word size of 30 and an overlap of 6. The Bloom filter is configured to
give a false positive rate of 0.005. As our implementation limits filter sizes to
powers of two for efficiency, the observed false positive rate may be substantially
lower in practice.

3 http://hackage.haskell.org/cgi-bin/hackage-scripts/package/bloomfilter
4 http://burtleburtle.net/bob/hash/

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/bloomfilter
http://burtleburtle.net/bob/hash/

Using Bloom Filters for Large Scale Gene Sequence Analysis in Haskell 187

To calculate a distance between a query sequence and a target sequence, we
index the target using a Bloom filter, then score the query sequence against
it. If the Bloom filter uses an overlap of 1—i.e. every word from the target
sequence is used in the Bloom filter—the score is the number of words from the
query that match the filter. With larger overlaps, we match every word from
the query sequence against the filter, but remove matches that occur closer than
the overlap. Typically, such matches arise from spurious similarities to unrelated
parts of the target, or highly repetitive sequences.

We can also calculate the expected number of false positives introduced by
the Bloom filter, to quantify their effect on result quality. Under the assumption
that the probability of a false positive result is word-independent, we can model
false positives using a binomial distribution. Given a number of lookups n and
false positive rate p, the expected number of false positives is np, with standard
deviation

√
np(1 − p).

We implemented a simple application that reads a set of fasta-formatted files
containing target sequences, and builds a Bloom filter for each. Query sequences
are then read from standard input, and matched against the Bloom filters, and
the best hit is reported.

To compare the efficiency of Bloom filter indexing to other approaches, we
also implemented versions of the application that use a balanced binary tree
(using the standard Haskell module Data.Set) with ByteString elements. Since
comparison of strings requires time proportional to their lengths, this is not
an optimal strategy, and we therefore also implemented a version using words
encoded as integers [17].

2.3 Applications and Data

We benchmarked our program in two different settings. We began by filtering
ESTs for contaminants. We then clustered ESTs by matching them to chromo-
somes.

Sets of expressed sequence tags, or EST s, are an important source of ge-
nomic information. These sequences are produced from messenger RNA gene
transcripts. ESTs are usually incomplete, and thus represent fragments of genes.
In addition, error rates are high—typically about 0.5–1% even in regions of rel-
atively high quality.

The current release of GenBank contains over eight million human ESTs,
representing 4.2 gigabytes of data. We downloaded these from the University of
California, Santa Cruz web site5.

The human genome is about 3 billion nucleotides in length, split into 23 chro-
mosomes. We downloaded the set of sequences representing these chromosomes
from UCSC6.

An EST originates from a gene that resides on a chromosome. Knowing the
location of each EST helps with a number of tasks, among which are identifying

5 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz
6 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFaMasked.zip

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFaMasked.zip

188 K. Malde and B. O’Sullivan

the gene; identifying its full extent and internal structure; and discovering or
identifying surrounding patterns that regulate the expression of the gene. We
thus used our application to cluster ESTs by identifying their chromosomes of
origin. An EST is assigned to the chromosome with most matching k-words if
the number of matches is statistically significant.

Our second application filtered sequences for contamination. As part of the
sequencing process, the molecules to be sequenced are inserted into a host organ-
ism (typically the bacterium E. coli) for mass production. Occasionally, genomic
DNA from the host organism is retrieved and sequenced instead of the desired
sequence, thus contaminating the resulting sequence data with unwanted se-
quences. It is therefore necessary to screen sequence data by comparing it to the
E. coli genome, and remove the offending sequences before further analysis.

While human chromosomes range up to 240 megabases (Mb) in size, the 5Mb
E. coli genome is relatively small. To provide a smaller test case for compar-
ing different indexing implementations, we also downloaded the genome for one
strain of E. coli from GenBank7 .

All tests were performed on a single core of a 2.4GHz Intel Core2 processor,
using version 6.8.3 of the ghc Haskell compiler.

3 Results

We randomly selected ESTs in sets of various sizes, and benchmarked the three
different indexing implementations by matching the ESTs against the E. coli
genome. The times are shown in Figure 1, we see that while integer matching
is faster than strings, the Bloom filter substantially outperforms both. A linear
regression shows that the Bloom filter indexing stage takes only 1.7 seconds,
compared to 20.2 for the Integer-encoded and 11.9 for the string-based indexing.
Similarly, the Bloom filter matches 1718 sequences per second, compared to
589 and 310 for the Integer and string based indexes, respectively.

Perhaps more important than time spent is memory consumption. Time af-
fects how long we must wait for a result, but excessive memory consumption
prevents us from successfully processing large sequences. While the set based
implementations allocate 160–190MB of memory (as measured by top) for this
test, the Bloom filter application runs in a mere 20MB, of which the Bloom filter
itself uses only 2MB.

By comparing the outputs from the set-based and the Bloom-filter-based im-
plementations, we can measure the number of actual false positives generated.
The results from the 10K data set are displayed in Figure 2. Here, 76.5% of the
sequences generated no false matches, and only 370 sequences had two or more
false matches.

Figure 2 also shows the expected number of false matches, calculated sep-
arately for each sequence. Here, we see clearly that due to the power of two
rounding of the Bloom filter size, the observed false positive rate is lower than
the requested rate.
7 http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore\&id=56384585

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=56384585

Using Bloom Filters for Large Scale Gene Sequence Analysis in Haskell 189

 0

 50

 100

 150

 200

 250

 300

10K 20K 40K 80K

ru
nn

in
g

tim
e

(s
ec

on
ds

)

data set size

set
iset

bloom

Fig. 1. Times (in seconds) using the Bloom filter, sets of ByteStrings, and sets of
integers to index the E. coli genome, and match sets of sequences against it

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 1 2 3 4

se
qu

en
ce

s

false matches

observed
expected

Fig. 2. False positives introduced by the Bloom filter from the 10K data set. 7 652
of the sequences have no false matches, 1 978 have one false match, 345 have two, 22
have three, and 3 sequences have four false matches. Also the expected false positives,
calculated as described in Section 2.2.

Finally, we built Bloom filters for the 23 chromosomes constituting the hu-
man genome, and matched all ESTs against them. Indexing the chromosomes
took 26 minutes, and the resulting Bloom filters consumed from 16 to 64MB of

190 K. Malde and B. O’Sullivan

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2

ch
r1

3

ch
r1

4

ch
r1

5

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
r2

0

ch
r2

1

ch
r2

2

ch
rX

un
m

at
ch

ed

Fig. 3. Matching sequences by chromosome. As the chromosome sequences used have
had repetitive regions masked, a large fraction of sequences are left unmatched.

memory, depending on chromosome size. The total memory used for the entire
genome was 864MB. Matching the set of eight million ESTs against the Bloom
filters took 49 hours. The resulting distribution of sequence locations is shown
in Figure 3.

The chromosome sequences used here were masked, where repetitive regions
were erased to avoid false positives. Many genes reside in masked regions, which
seems to be the most likely explanation for 916 583 sequences that failed to
match any of the chromosome. Manual checks have confirmed this for a small
sample. Other possible explanations can be low quality sequence causing false
negatives, or contamination.

4 Discussion and Conclusion

4.1 Performance Tuning Experiences

Early profiling of our application’s performance indicated that the Bloom filter
library accounted for over 70% of run time, even though we had addressed per-
formance early on by double hashing in a single pass and using power-of-two sizes
for bit arrays. Further investigation caused us to make a number of substantial
changes. These all remained internal to the Bloom filter implementation, and
did not affect its public interface.

By default, the ghc compiler checks the bounds of array accesses at run time,
and we had somehow missed this early on. Switching to the alternative “unsafe”
interfaces doubled our performance, by eliminating branches from an inner loop.

The lazy variant of the ByteString data type represents strings in chunked
form [8], so a sequence can straddle multiple chunk boundaries. The Jenkins

Using Bloom Filters for Large Scale Gene Sequence Analysis in Haskell 191

hash functions operate over contiguous C strings. To address this, we began by
concatenating chunks into one contiguous string. In addition, the ByteString
library by default makes a defensive copy of data that must remain immutable,
to protect it from modification by native code. We were thus copying every
ByteString at least once, and those that straddled a chunk boundary twice. We
reimplemented the Jenkins hash code to operate incrementally over ByteString
chunks and eliminated the defensive copying from the ByteString library, thereby
doubling our performance.

ghc performs runtime safety checks on the bounds of bit-shifting operations.
Even given constant shift values, we were unable to predict the circumstances
under which ghc would eliminate those checks from our code. To ensure uni-
form branch-free performance, we implemented our own bit-shifting functions
using ghc’s word-level primitives. The branches thereby eliminated netted us a
performance gain of perhaps 20%.

Many of our low-level optimizations were motivated by reading dumps from
ghc’s simplifier phase, using Stewart’s ghc-core tool8. Although simplifier out-
put is challenging to read, with some experience it gives a clear picture of when
unnecessary memory allocations, or unboxing and reboxing operations, are oc-
curring.

Faced with a number of potentially unsafe code transformations, we used the
QuickCheck testing tool [6] to give ourselves statistical confidence that our code
remained correct. We found its ability to provide us with a test case when a test
failed to be invaluable in quickly directing us to the sources of bugs. For instance,
when we rewrote the Jenkins hashing code to consume chunks incrementally, we
wrote a QuickCheck property to ensure that the hash of a contiguous string was
the same as the hash of a chunked string. Checking this property over successively
larger random inputs exposed three subtle errors in our handling of boundary
conditions during chunk traversal.

The final speed of our Bloom filter was approximately five times better than
when we began, and came within 8% of a C program that we had written to
offer a point of comparison. This experience suggests that low-level Haskell per-
formance tuning can be highly profitable. With extensive use of QuickCheck, we
keep the risk of unsafe changes low, and create working code more quickly.

While we have begun writing about the practicalities of Haskell performance
analysis and tuning in [21], there remains plenty of scope for further compiler
improvements; more experience reports; and better tool support to assist pro-
grammers in writing faster (but still safe!) Haskell code.

4.2 Bloom Filters, Bioinformatics and Haskell

The Bloom filter is a tremendously useful data structure: in settings such as ours,
it holds substantial advantages over traditional indexing schemes by allowing
indexing of large data sets with long word sizes quickly, and with low memory
consumption.

8 http://hackage.haskell.org/cgi-bin/hackage-scripts/package/ghc-core

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/ghc-core

192 K. Malde and B. O’Sullivan

The industry-standard alignment tool blast [3] aligns approximately 40 se-
quences per second when aligning the 10K data set against the E. coli genome.
As blast identifies the alignments while our indexing merely detect the pres-
ence of a similarity, this result is not directly comparable to the results reported
above. Nonetheless, it illustrates the potential benefit of using the Bloom filter
as a preprocessing stage to eliminate unlikely candidates for a match.

To turn our sample implementation into an industry strength tool, there are
many options to be explored: The impact of false positives could be reduced by
requiring two or more consecutive (that is, spaced apart by exactly the overlap
length) matches. Instead of counting matches along the length of the sequence,
we could count matches within a fixed-size region (window). We could improve
sensitivity by using gapped word indices [24]. Sequence quality should be taken
into account. Our objective here has been to demonstrate the efficacy of Bloom
filters in this application, and we therefore defer exploring these possibilities for
the future.

We developed our prototype over the course of a few days, using preexist-
ing Haskell libraries to parse sequence data and manipulate Bloom filters. The
application-specific code amounted to 75 lines.

The field of bioinformatics is, in a sense, divided in two. On one side are
standard algorithms and data structures, which must be highly optimized to
deal with large data sets. These are typically implemented in C. On the other
side are analysis pipelines, often project-specific, which combining such tools to
perform a complete analysis. Here, rapid development is important, and scripting
languages are often used.

We have demonstrated that we can address both sides of this divide with
Haskell.The efficient implementationof crucial data structures suchasByteStrings
and Bloom filters allows the application programmer to implement pipelines of
functions, and from there entire tools, in a straightforward, even näıve, way, and
still achieve both excellent performance and a high degree of confidence in results.

Acknowledgments

The authors wish to thank Shannon Engelbrecht for her extensive comments on
drafts of this manuscript.

KM is supported by grant NFR 183640/S10 from the national Functional
Genomics Programme (FUGE) of the Research Council of Norway.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing Suffix Trees with Enhanced
Suffix Arrays. Journal of Discrete Algorithms 2(1), 53–86 (2004)

2. Abouelhoda, M.I., Ohlebusch, E., Kurtz, S.: Optimal Exact String Matching Based
on Suffix Arrays. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS,
vol. 2476, pp. 31–43. Springer, Heidelberg (2002)

3. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: A basic local alignment
search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

Using Bloom Filters for Large Scale Gene Sequence Analysis in Haskell 193

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

5. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey.
Internet Mathematics 1(4), 636–646 (2003)

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ACM SIGPLAN Notices, pp. 268–279. ACM Press, New
York (2000)

7. Cloonan, N., Forrest, A.R.R., Kolle, G., Gardiner, B.B.A., Faulkner, G.J., Brown,
M.K., Taylor, D.F., Steptoe, A.L., Wani, S., Bethel, G., Robertson, A.J., Perkins,
A.C., Bruce, S.J., Lee, C.C., Ranade, S.S., Peckham, H.E., Manning, J.M., McK-
ernan, K.J., Grimmond, S.M.: Stem cell transcriptome profiling via massive-scale
mRNA sequencing. Nature Methods 5(7), 613–619 (2008)

8. Coutts, D., Stewart, D., Leshchinskiy, R.: Rewriting haskell strings. In: Hanus, M.
(ed.) PADL 2007. LNCS, vol. 4354, pp. 50–64. Springer, Heidelberg (2006)

9. Dillinger, P.C., Manolios, P.: Bloom filters in probabilistic verification. In: Hu,
A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 367–381. Springer,
Heidelberg (2004)

10. Galperin, M.Y.: The molecular biology database collection: 2008 update. Nucleic
Acids Research 36, D2–D4 (2008)

11. Gotoh, O.: An improved algorithm for matching biological sequences. Journal of
Molecular Biology 162, 705–708 (1982)

12. Kalyanaraman, A., Aluru, S., Brendel, V., Kothari, S.: Space and time efficient
parallel algorithms and software for EST clustering. IEEE Transactions on Parallel
and Distributed Systems 14(12), 1209–1221 (2003)

13. Kent, W.J.: BLAT—the BLAST-like alignment tool. Genome Research 12(4), 656–
664 (2002)

14. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: Building a better
bloom filter. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
456–467. Springer, Heidelberg (2006)

15. Launchbury, J., Jones, S.L.P.: Lazy functional state threads. In: Programming
Languages Design and Implementation, pp. 24–35. ACM Press, New York (1994)

16. Malde, K., Coward, E., Jonassen, I.: Fast sequence clustering using a suffix array
algorithm. Bioinformatics 19(10), 1221–1226 (2003)

17. Malde, K., Schneeberger, K., Coward, E., Jonassen, I.: RBR: Library-less repeat
detection for ESTs. Bioinformatics 22(18), 2232–2236 (2006)

18. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

19. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Berka, L.A.B.J.,
Braverman, M.S., Chen, Y.-J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes,
X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alen-
quer, M.L.I., Jarvie, T.P., Jirage, K.B., Kim, J.-B., Knight, J.R., Lanza, J.R., Lea-
mon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B.,
McDade, K.E., McKenna, M.P., Myers2, E.W., Nickerson, E., Nobile, J.R., Plant,
R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W.,
Srinivasan, M., Tartaro, K.R., Tomasz3, A., Vogt, K.A., Volkmer, G.A., Wang,
S.H., Wang, Y., Weiner4, M.P., Yu, P., Begley, R.F., Rothberg, J.M.: Genome
sequencing in microfabricated high-density picolitre reactors. Nature 437(7057),
376–380 (2005)

194 K. Malde and B. O’Sullivan

20. Needleman, S., Wunsch, C.: A general method applicable to the search for similari-
ties in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3),
443–453 (1970)

21. O’Sullivan, B., Stewart, D., Goerzen, J.: Real World Haskell. In: Profiling and
optimization, ch. 25. O’Reilly Media, Sebastopol (2008)

22. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147, 195–197 (1981)

23. Steemers, F.J., Gunderson, K.L.: Illumina profile: technology and assays. Pharma-
cogenomics 6(7), 777–782 (2005)

24. Valle, G.: Discover 1: a new program to search for unusually represented DNA
motifs. Nucleic Acids Research 21(22), 5152–5156 (1993)

25. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of 14th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 1–11 (1973)

	Using Bloom Filters for Large Scale Gene Sequence Analysis in Haskell
	Introduction
	Sequence Similarity
	Word-Based Approaches
	Suffix Trees and Arrays
	Bloom Filters

	Methods
	A Fast Bloom Filter in Haskell
	Indexing Sequences with Bloom Filters
	Applications and Data

	Results
	Discussion and Conclusion
	Performance Tuning Experiences
	Bloom Filters, Bioinformatics and Haskell

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

