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Abstract

Sequence alignment is an important bioinformatics tool for identifying homology, but searching against
the full set of available sequences is likely to result in many hits to poorly annotated sequences providing
very little information. Consequently, we often want alignments against a specific subset of sequences: for
instance, we are looking for sequences from a particular species, sequences that have known 3d-structures,
sequences that have a reliable (curated) function annotation, and so on. Although such subset databases
are readily available, they only represent a small fraction of all sequences. Thus, the likelihood of finding
close homologs for query sequences is smaller, and the alignments will in general have lower scores. This
makes it difficult to distinguish hits to homologous sequences from random hits to unrelated sequences.
Here, we propose a method that addresses this problem by first aligning query sequences against a
large database representing the corpus of known sequences, and then constructing indirect (or transitive)
alignments by combining the results with alignments from the large database against the desired target
database. We compare the results to direct pairwise alignments, and show that our method gives us
higher sensitivity alignments against the target database.

Introduction

During the last decade, new developments in sequencing technology have resulted in lower costs and
larger sequence volumes. Genome and transcriptome sequencing is now performed almost routinely, and
the amount of publicly available sequence data has grown enormously. In contrast, correctly identifying
the sequence by experimental means remains expensive, and as sequencing volumes continue to grow
exponentially the proportion of sequences that can be analyzed in the lab is quickly diminishing. Thus,
accurate and efficient computational methods for correct indentification and annotation of newly produced
sequences remains an increasingly important challenge.

Typically, computational annotation involves searching for similar but known sequences using search
tools like BLAST [1]. Putative function can then be derived by transferring annotation from matches
deemed to be of sufficient reliability, typically using an alignment score threshold or BLAST E-value.
Although a large number of sequence data exists in public databases (as of March 2012, TrEMBL [2]
contains close to twenty million proteins, and NCBI’s RefSeq [3] almost fifteen million), only a few
model organisms can be considered well studied, and most annotation is derived from homology or
other automated means. Consequently, many sequences in these databases lack precise and detailed
annotations.

In contrast, curated databases like SwissProt [2] generally provide much better annotations based
on experimental study of the proteins in the database. The downside is limited proteome coverage,
and although several thousand eukaryote species are represented in SwissProt [2], only 18 of them are
represented with more than 1000 proteins.

A lack of close homologs tempts the researcher to use lower similarity thresholds, decreasing the
reliability of matches and increasing the likelihood of false positives and incorrect annotations. This
problem is exacerbated further when the species or process under study is phylogenetically remote from
model organisms like human, mouse, or yeast.
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Thus, the dilemma faced by the researcher seeking to identify novel sequences is the choice between
a) a small, curated database like SwissProt, which would produce precise and detailed descriptions but
where low similarity scores would mean that transferred annotations would not necessarily be accurate,
or b) a large database like TrEMBL which would result in higher confidence alignments, but to proteins
with less informative and possibly unreliable descriptions.

Here we propose an approach that combines the sensitivity of searching a large database with the
detailed annotation from a curated database. This is achieved by calculating alignments against the
curated database indirectly, combining hits against a comprehensive database with alignments between
the comprehensive database and the curated one.

Our approach is inspired by algorithms for multiple sequence alignment (MSA), and in particular the
T-Coffee [4] algorithm, which uses triplets of pairwise aligned sequences to increase overall consistency of
the multiple alignments by avoiding early local misalignments. These triplets are similar to our transitive
alignments, but in contrast to the MSA problem which is NP-complete and therefore must depend on
heuristics [5], we limit our aim to producing pairwise alignments, and thus we are able to provide an
optimal solution.

Methods

In the following, we first define and describe the composition of two pairwise alignments to produce a
transitive alignment. We then show how to combine a set of alignments into a consensus alignment, and
discuss a scoring scheme and our current implementation.

Composing alignments

We define an alignment of a pair of sequences as a function (f , say) that maps positions in one sequence
to positions in the other. In addition, we require two invariants, first that the mapping is one-to-one,
that is, given positions p and q,

fp = fq ⇔ p = q (1)

It follows that the alignment invertible, i.e. there exists a mapping f ′ back from the second sequence
to the first one. Second, the alignment is monotonic (or colinear), satisfying:

fp > fq ⇔ p > q (2)

(Note that for or nucleotide sequences matches may be against the reverse-complement strand. In
this case we represent target positions by their negation, and then the criterion still holds). Given an
alignment f from a sequence a to a sequence b, and an alignment g from b to a sequence c, we define the
transitive alignment to be the function composition g ◦ f , i.e. the mapping produced by first applying
f to each position in a to get a coordinate in b, and then applying g to get a coordinate in c. This is
illustrated in Figure 1. It is easy to see that g ◦ f constitutes a valid alignment, as both the one-to-one
property and the monotonicity is preserved.

Let A be a set of query sequences, B be a (large) set of intermediate sequences, and C be a set of
target sequences. Given a set of alignments F : A → B, and G : B → C, we can for each fij ∈ F aligning
a sequence ai ∈ A to a sequence bj ∈ B find the set of all gjk ∈ G that aligns bj to some sequence ck ∈ C.
We can then construct the set of all transitive alignments H : A → C containing all alignments gjk ◦ fij .
Note that for any i and k there may be several values of j, each representing one particular intermediate
sequence. The set of transitive alignments H may therefore contain more than one alignment of sequences
ai and ck.
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Scoring heuristic

The preceding description ignores some details for the sake of simplicity. In addition to providing a
mapping between positions, alignments are also assumed to have an associated score. In order to calculate
a score for transitive alignment, we first distribute the alignment score evenly to each pair of positions
in the alignment. I.e., given an alignment of score s that aligns position pairs (pi,qi) for i ∈ {1..n} , the
alignment score for each position pair is s/n. The composition of two alignments uses the minimum of
the involved scores, so if, as in Figure 1, f maps position p to position q with score s/n and g maps q to
r with score t/m, the transitive alignment g ◦ f maps p to q with a score of min(s/n, t/m).

For the entire alignment (e.g., for scoring the consensus alignments), the score is calculated as the
sum of scores for each coordinate pair, recovering the original score if the alignment is constructed from
a single alignment.

Combining alignments

Given a set of (transitive) alignments H : A → C, we can for any two sequences a ∈ A and c ∈ C extract
the subset H ′ of alignments from a to c. As these alignments are not necessarily consistent with each
other, it remains to reconcile these in a single consensus alignment.

We formulate the problem as follows: given a set of scored alignments H ′ from a to c, construct the
combined alignment by choosing the subset of position pairs from all alignments in H ′ that maximizes
the total sum of scores while satisfying Equations 1 and 2.

Let si,j be the maximal alignment score in H ′ that aligns position i in sequence a to position j in
sequence c. We can then calculate the total score Si,j for aligning a(0..i) and b(0..j) with the recurrence:

Si,j = max

 Si−1,j

Si,j−1

Si−1,j−1 + si,j

with S0,j = Si,0 = 0 (3)

This recurrence is analogous to sequence alignment (without gap penalties), with a reward for aligning
ai with bj as the maximum alignment score linking these positions (i.e. sij), and we solve it similarly by
dynamic programming.

Results

To explore transitive alignments, we used UniRef 50 [6] as the intermediate database. Its entries are at
most 50% similar on the sequence level, retaining a large variety of proteins while reducing the number
of sequences to approximately 4 million – a more manageable number than the full UniProt database,
but still about eight times the size of SwissProt, and encompassing a larger variety of proteins. Unless
otherwise noted in the text, the following uses the NCBI BLAST suite version 2.2.25 using the default
parameters.

Protein structure identification

The SCOP database [7] classifies proteins based on structural alignments. Protein 3D structure is gener-
ally considered to be more conserved than protein sequence, and structural alignments is therefore able
to identify homology in many cases where sequence comparison fails. At around 25-30% identity we
find the Twilight Zone, where pairwise sequence alignments start to produce a considerable number of
non-homologous hits [8].

We downloaded SCOP 40, version 1.75A. This contains 11 211 proteins from SCOP with at most 40%
identity, classified into SCOP’s categories of class, fold, superfamily, and family. We used BLASTP to
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align this set of proteins against itself, and we also generated transitive alignments by using BLASTP
to match the SCOP proteins to UniRef 50, and BLASTP alignments from UniRef 50 to SCOP 40, in
both cases with an E-value threshold of 0.1. The results were sorted according to alignment score, and
classified as true positives if the query and target had the same classification, false positives if they had
different classification. The resulting ROC curves for the SCOP superfamily and fold levels are shown in
Figure 2.

We see that for the same number of false positives, we are able to identify a higher number of true
positives using transitive alignments. We also see that as we increase the number of false positives,
transitive alignments gain true positives at a higher rate. Using direct BLAST with the default E-
value threshold of 10, we identified a total of 47 908 false and 54 222 true positives at the superfamiliy
level. Using transitive alignments with the same number of false positives, we identified 112 718 true
positives, more than a twofold improvement. We also attempted the BLAST analysis specifying different
substitution matrices, using BLOSUM-90 and BLOSUM-45 instead of the default BLOSUM-62. This
did not have any substantial effect on the outcome, and BLOSUM-62 produced marginally better results
than the alternatives.

It is also interesting to compare the results for superfamilies and folds. We see that using the looser
criterion of folds only marginally increases the number of true positives for BLASTP, but that there is a
substantial improvement for the transitive alignments. For instance, at 500 false positives, we find 36 243
true positives using BLAST at the superfamily level, with an additional 459 (1.3%) hits at the folds level.
For transitive alignments, we identify 67 932 true positives at the superfamily level, increasing by 6 419
(9.4%) at the folds level.

Transcript annotation

The salmon louse Lepeophtheirus salmonis is a small crustacean that is parasitic on salmonid fish. It is
phylogenetically distant from most well-studied species, with copepods believed to have separated from
insects more than 300 million years ago [9]. In addition, the salmon louse has a specialized life cycle,
which adds to the challenge of identifying its proteins.

As part of the Salmon Louse Genome Project a set of 45 360 putative transcripts have been predicted
ab initio from a draft genome assembly using Augustus [10]. In the following, we will investigate how
transitive alignments can be used to annotate these sequences.

The input sequences were aligned against UniRef 50 using BLASTX and the UniRef 50 sequences were
aligned against SwissProt using BLASTP, in both cases using an E-value threshold of 10−4. Transitive
alignments were then calculated from these sets of BLAST hits, resulting in 23 457 transcripts receiving
at least one alignment to a SwissProt sequence.

Sensitivity

In order to compare our approach to a traditional BLAST analysis, we aligned the putative transcripts
directly against SwissProt using BLASTX. Using a maximum E-value of 1, we were able to align 29 137
(64%) transcripts, but as shown in Figure 3, the number decreases rapidly with stricter E-value thresholds,
and a large fraction of transcript only have low confidence alignments. To get the same number of aligned
transcripts as we found using transitive alignments requires an E-value threshold of 0.33.

A direct alignment of the putative transcripts with an E-value threshold of 10−4 to SwissProt results
in 14 018 (31%) of the sequences matching at least one protein sequence. Aligning the transcripts to
UniRef 50 results in 25 034 (55%) sequences matching, and aligning UniRef 50 against SwissProt results
in 1.9 million (43%) of the UniRef proteins being aligned. This is summarized in Figure 4. In light of
these numbers, the number (23 457, or 52%) of transitively aligned sequences is high, and sequences in
UniRef 50 that are aligned to a transcript also have a higher probability than average of matching a
SwissProt sequence.
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Consistency

SwissProt and UniProt IDs (entry names) consist of two parts, a mnemonic protein ID (or gene sym-
bol), and a mnemonic species ID. For instance, the protein CYAB BORPE is the Cyclolysin secre-
tion/processing ATP-binding protein gene (CYAB) found in the species Bordetella pertussis (BORPE).
For each transcript, we extracted the gene symbol from the best SwissProt hit, and identified the position
(rank) of the highest scoring transitive alignment to a protein with the same gene symbol (i.e., ignoring
any differences in organism).

We partitioned the transcripts in categories based on the E-value for the best direct alignment to
SwissProt. Figure 5 shows the fraction of the transcripts in each category receiving an annotation based
on transitive alignments. We see that the likelihood of receiving a transitive annotation increases with
the quality of the SwissProt alignment. For low E-values, the consistency is low, and for the transcripts
with only weak direct alignments (E-value > 0.1), only 508 (5.7%) of them were transitively aligned
to the same gene symbol as the direct alignment. Interestingly, a much larger number (1 957, 21.8%)
received a different annotation.

A more detailed view on the consistency of the alignments is given in Figure 6. This shows the rank of
the best SwissProt hit among the transitive alignments. We see that the best SwissProt hits are usually
at or near the top of the transitive alignments, and that this is more pronounced for transcripts with
good direct hits.

One important caveat is that gene symbols do not provide an unambiguous or even accurate way to
identify orthologs, and for historical reasons, orthologous genes are often assigned different gene symbols.
Also, members of closely related gene families can be difficult to distinguish, and will often have similar,
but not identical, gene symbols. For instance, the transcripts g34 and g35 were annotated based on direct
alignments as LCE and NAS4, respectively. Their transitive alignments assigned both to NAS15, which
means that for the purposes of our analysis, both transcript were counted as a changed gene symbol.
However, both the NASx family and LCE genes are metal-binding proteinases in the peptidase M12A
family. A closer inspection of the genome revealed that g34 and g35 were indeed the same gene, and that
they were incorrectly predicted to be separate transcripts due to a misassembly of the genome, where a
short region had been erroneously duplicated in the scaffolding process.

Improved alignments

With a more sensitive local alignment algorithm, we expect to see longer alignments in the case where the
correct homolog is identified. For each transcript, we calculated the ratio of transitive alignment length
to the direct alignment length, both for the highest scoring transitive alignment, and for the same target
sequence as the best direct alignment. The results are shown in Figure 7. We see that for all categories,
more than 75% of the sequences produce longer transitive alignments than direct alignments. Here also,
we see the tendency of lower improvements for the best alignment category. An example where a longer
alignment is discovered using transitive alignments is shown in Figure 8. Here, the annotation for one
transcript is extended through the use of several intermediate matches, resulting in a transitive alignment
of length 145 amino acids, in contrast to the direct alignment length of 89 amino acids.

Pfam domains and novel annotations

Of the transcripts, 16 223 (35.8%) had no direct BLAST hits to SwissProt. Using transitive alignments,
we were able to identify an alignment for 2405 of these. The distribution of alignment scores and lengths
are given in Figure 9. As expected, most alignments are short and with low scores, but there are also
several transcripts with long or high scoring alignments.

SwissProt records are, among other information, annotated with identified protein domains. We
therefore compared the transitive alignments to the results of using HMMER with Pfam to identify
domains in the sequences. Of the full set of transcripts, HMMER was able to annotate 13 393 (29.5%)
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with a Pfam domain. (If we limit the E-value to 10−4 the number of transcripts with an identified domain
is 12 985, or 28.6%). For each of the transcripts we examined the SwissProt record of the best transitive
alignment hit. We found that for 12 727 (95.0%) transcripts, the highest scoring protein was annotated
with the domain identified using HMMER.

Of the transcripts without direct BLAST hits, only 117 (4.7%) were annotated with a Pfam domain
annotation using HMMER, these are shown separately in Figure 9. Examining the SwissProt records of
the highest scoring transitive alignment, we find that 93 (79.5%) of them are annotated with the same
Pfam domain as HMMER identifies.

The most commonly occurring domains in this set, and the corresponding transitive alignments, are
listed in Table 1. Here we see that our annotations are quite consistent with the identified domains, for
instance: all the THAP domains occur in sequences identified as THAPx variants; the Transposase 1 and
HTH Tnp Tc3 2 (helix-turn-helix) domains are identified in sequences all annotated as transposases; and
POGK, POGZ, TIDG6, and JERKL are all annotated with the DDE 1 endonuclease domain in UniProt.

An example of a novel annotation is shown in Figure 10, where the transcript is aligned via two
different UniRef 50 sequences. Both sequences map consistently to a SwissProt sequence, but with
little overlap. The transitive alignment thus covers the whole transcript, and it can be unambiguously
annotated as a fragment of a gene similar to mariner transposase [11].

Discussion

There are now vast amounts of easily available sequence data, and although large resources are committed
to curation and experimental validation, the proportion of uncurated data is large and growing. As the raw
data becomes cheaper to produce, we need automatic methods that can exploit the raw data directly. The
method we present here use uncurated sequence data to provide a context for sequence alignments, and
is able use this context to construct alignments with higher sensitivity than direct, pairwise alignments.

As a typical transcript annotation experiment, we aligned transcripts to SwissProt, and found that
using transitive alignments with a relatively conservative E-value threshold identified alignments for a
larger fraction of the query sequences than direct alignments with similar parameters. Also, the align-
ments identified transitively are substantially longer, indicating higher sensitivity. We also see that we
are able to find identified Pfam domains from transitively aligned protein matches.

Perhaps the most significant result is the identification of SCOP folds and superfamilies. Here we
see that not only does transitive alignment identify the known SCOP relationships more accurately than
direct BLAST, but while BLAST mainly find superfamily relationships, transitive alignments are also
able to identify many relationships at the more distant fold level. This is perhaps the clearest evidence
that our method offers substantial improvement over direct BLAST.

Related work

Perhaps the best known tool for identifying distantly related homologs is PSI-BLAST [1]. It uses the
result of an initial BLASTP query against a database to build a position-specific scoring matrix (PSSM),
which is then used to search the database again to identify more matching sequences, and this process is
then iterated.

Similar to the PSSMs generated by PSI-BLAST, it is possible to identify functionally related proteins
through shared motifs or domains, often described using hidden Markov models. Typically, motif or
domain databases (e.g. Pfam [12] or SMART [13]) are derived from collections of proteins, and used with
search programs like HMMER [14] to search the candidate sequences.

Although these tools share the goal of identifying homology, they differ from our approach in several
important respects. First, although we also make use of multiple sequences to strengthen the results,
our aim is to identify individual homologs. Thus, our method serves as a drop-in replacement for regular
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BLAST, and the method is simpler both to understand and to use as it avoids stochastic models of
sequences or sequence fragments. In contrast to PSI-BLAST, our method can be used to annotate
nucleotide query sequences directly, and where PSI-BLAST results in a cluster of related sequences, our
method results in a set of individual sequences in a specific target database.

Combining or post-processing pairwise BLAST results is not a new approach, and e.g. taking the best
alignment score between groups of sequences has been shown to identify protein family relationships with
a higher sensitivity than using stochastic models, at least for small groups of sequences [15]. Our method
differs in that it does not depend on any a priori grouping or classification, and that it produces the
alignment of sequence positions, and not just a similarity score.

Future Directions

In our analyses we have kept the intermediate and target databases separate. This serves to distinguish
the effect of transitive alignments from direct alignments, but will lead to inferior results in some cases
when the sequences in the intermediate database match neither query or target sequence well. In practice,
this is easily avoided by merging the seqeunces from the target database into the intermediate database.

In our current experiment, we have used BLAST-based transitive alignments from nucleotide sequences
to proteins, and from proteins to proteins. It is of course possible to use different combinations of sequence
databases, or to use different alignment software. It is also possible to extend the chain of databases by
introducing more intermediate databases.

Similarly, the method is not limited to traditional sequence alignments. For instance, SwissProt
contains annotated features for many of its sequences, and one could extract sequence-to-feature “align-
ments” to identify conserved domains. Functional annotation with Gene Ontology terms [16] is often
derived from protein alignments [17], but as is illustrated by the example in Figure 10, this runs the risk
of one conserved domain leading to an incorrect annotation with terms belonging to a different domain
that happens to occur on the same sequence in the database.

Here we have used a simplistic scoring model for an alignment, distributing BLAST scores uniformly
over the aligned region, and summing the scores for all aligned position pairs. This scheme has the
property that it preserves the original BLAST score, but other schemes are certainly conceivable. The
consensus calculation could for instance be modified to use affine gap penalties, and differentiate between
global and local alignments. We have not studied transitive alignment scores in detail, and consequently,
the alignment score is not interpreted beyond ranking alignments. More work is needed before we can
give alignment scores any meaningful interpretation, for instance in terms of p- or E-values.

Conclusion

The choice of databases to use for sequence alignment is often a compromise between accuracy and
precision. By using transitive alignments, we can leverage searches against large databases that give high
sensitivity and produce stronger hits against a curated database than one would get directly, and thus
make this compromise less severe.

The method is conceptually simple, and relies only on standard alignment software and sequence
databases. Addition of new sequences to the databases and improvements in sensitivity in the alignment
software (e.g., [18–20]) will therefore improve the results. Also, as the output is similar to BLAST output,
transitive alignments can be used directly in existing analysis pipelines. In contrast to using precalculated
patterns, motifs or classes, transitive alignments rely only on sequence databases. We therefore believe
transitive alignments provides a useful and easy to use method, and a valuable addition to the molecular
biology toolset.
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Availability

We have implemented transitive alignments in Haskell, using version 7.4.1 of the GHC compiler. The
source code is available under a GPL license from http://malde.org/~ketil/biohaskell/transalign.
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17. Conesa A, Götz S, Garćıa-Gómez JM, Talón JTM, Robles M (2005) Blast2go: a universal tool for
annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–
3676.
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Figure 1. The alignments f maps position p in a to position q in b and the alignment g maps position
q in b to r in c. Thus, the composed alignment, g ◦ f , maps position p to position r.
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Figure 9. Length and score of transitive alignments for transcripts that had no direct BLAST match.
Although not directly comparable, direct alignments with an E-value of 10−4 have alignment scores
averaging 44.4. Data points marked with as × represent transcripts with an identified Pfam domain.

g117 3

F4WD00

SETMR 331

1551UPI0022CA646 94
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Mariner domainSET domain

Figure 10. The g117 transcript had no significant BLASTX hits to SwissProt, nor any annotated
Pfam domains. Again, by using hits against two UniRef 50 sequences, we can calculate a transitive
alignment that covers the entire transcript sequence. Interestingly, the SETMR gene is primate specific,
and consists of a Histone-lysine N-methyl transferase (SET domain, EC 2.1.1.43) with an inserted
transposase (Hsmar1, EC 3.1), and it also has one isoform without the transposase. The transitive
alignment of g117 is against the transposase domain, and the alignments of the intermediate proteins
also match this part almost exactly, so in all likelihood, the SET domain is irrelevant for g117.
Nevertheless, the annotation of F4WD00 in UniProt is as a methyl transferase. An annotation based on
this would thus be incorrect, illustrating the dangers of using an uncurated database.
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Tables

Pfam Motif SwissProt hit Count
Chitin bind 3 OR92A DROME 2
CUE TC1A CAEEL 1

TCB2 CAEBR 1
DDE Tnp IS1595 Y132A HAEIN 2
DUF227 DHS27 CAEEL 2
DUF659 CGBP1 MOUSE 2
MTTB MTTB DESHY 2
Peptidase A17 POL4 DROME 1

TAAR4 MOUSE 1
RVP YRD6 CAEEL 2
rve YRD6 CAEEL 3
RVT 1 LIN1 NYCCO 1

PO11 NASVI 1
RTJK DROME 1

Zona pellucida CUT1 CAEEL 2
ELDP2 LOTGI 1

DDE 1 POGK HUMAN 2
POGK MOUSE 1
POGZ MOUSE 1
TIGD6 HUMAN 1
JERKL MOUSE 1

THAP THAP2 HUMAN 3
THAP4 BOVIN 2
THAP2 MOUSE 1
THAP1 DANRE 1
THAP9 HUMAN 1

Transposase 1 MOS1T DROMA 11
SETMR HUMAN 2

HTH Tnp Tc3 2 TCB1 CAEBR 5
TCB2 CAEBR 4
TC1A CAEEL 3
TC3A CAEEL 3
SETMR HUMAN 1
MOS1T DROMA 1

Table 1. The most frequent Pfam motifs identified in the novel transcripts.


