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ABSTRACT

A problem in EST clustering is the presence of repeat
sequences.Toavoid falsematches, repeatshave tobe
masked. This can be a time-consuming process, and
it depends on available repeat libraries. We present
a fast and effective method that aims to eliminate the
problems repeats cause in the process of clustering.
Unlike traditional methods, repeats are inferred dir-
ectly from the EST data, we do not rely on any external
library of known repeats. This makes the method
especially suitable for analysing the ESTs from
organisms without good repeat libraries. We demon-
strate that the result is very similar to performing
standard repeat masking before clustering.

INTRODUCTION

EST sequences are an abundant source of information about
gene structure and expression. To organize this information
and improve sequence length and quality, EST sequences are
often clustered together. Clustering methods differ, but they
all rely on grouping overlapping sequences together, based on
the idea that overlapping sequences represent the same gene
or transcript.

One problem in clustering is the presence of repeats.
Repeats are common sequence motifs duplicated hundreds
of times in the genome (1). Since coding sequences do usually
not contain repeats, the frequency of repeats is much smaller in
ESTs than in genomic sequences. However, repeats can still be
present in UTR regions of transcripts, and also in retained
intron sequences. Repeat sequences lead to false overlaps
of unrelated ESTs, sometimes resulting in oversized clusters.

The usual solution to the problem is to remove repeats by
masking. The most commonly used program for masking
repeats is RepeatMasker by Smit and Green (http://www.
repeatmasker.org). It is based on Smith–Waterman alignment
with a library of known repeats, as well as algorithms for
detecting low-complexity regions. While this usually works
well, there are two problems. One is speed. Repeat masking is
sometimes much more time-consuming than the clustering

itself. Methods for speedup exist (2), but masking of large
datasets remains a substantial task.

The second problem is that it can only find known repeats
(except for low-complexity regions), which is a major draw-
back when working with new species. Approaches to repeat
identification from genomic sequence alone have been made
(3,4), but this requires a time-consuming all-against-all
comparison of the genome to itself.

We present a method to eliminate problematic repeats dur-
ing the process of clustering. The method is fast and library
independent. It is based on the fact that an EST containing a
common repeat sequence will generate many more matches in
the repeat region than in the rest of the EST. The repeat can
thus be identified and masked. Despite the diversity of many
known repeat elements, this seems to work surprisingly well.
The method is implemented in a program called RepeatBeater.

We emphasize that this method cannot find all repeat
sequences like a library search could do, since it will only
find common repeats in the actual dataset. However, this
is exactly what causes problems in clustering. Our goal is
to remove clustering artifacts caused by repeats, and not to
identify all repeats. Nevertheless, we demonstrate that the
method finds a large proportion of repeats of certain types.
We also show that the resulting clusterings are similar to the
clusterings obtained with traditional repeat masking, which is
an indication that repeat types not discovered do not present a
major obstacle for EST clustering.

In the following sections, we first describe the method and
how to tune the parameters, and then we present and discuss a
verification on example datasets.

MATERIALS AND METHODS

Datasets

For parameter tuning, we use a test dataset containing 1873
human ESTs. These sequences constitute the largest cluster
obtained when clustering a dataset containing 105 991 human
ESTs that were chosen randomly from the UniGene Human
EST collection (5).

After masking for human repeats with RepeatMasker’s
default options, this single cluster containing the 1873 ESTs
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is separated into 253 clusters plus 186 singletons. We will refer
to this clustering as the reference clustering.

Additionally, we used the following datasets for verification
of the method and parameters: the first 100 000 Arabidopsis
thaliana ESTs from UniGene (build 43) featuring ‘cDNA’ in
the description line, the first 50 000 Oryza sativa ESTs from
UniGene (build 51) featuring ‘cDNA’ in the description line
and the first 100 000 C.elegans ESTs from UniGene (build 15).

MASKING METHOD

Terminology and definitions

To calculate all matches in a dataset, we used the freely
available xsact tool, which was also used to perform all
clusterings (5). Clustering is based on identifying the maximal
set of exactly matching subsequences between each pair of
sequences. The word size (k parameter) was set to 20, meaning
that only exactly matching substrings of that length or longer
will be detected.

Consequently, we define a ‘match’ as the occurrence of
identical words of length >20 in two sequences. The two
sequences containing a match constitute a ‘matching pair’.

Each nucleotide position in a sequence is included in
zero or more matches. We call the distribution of the number
of matches over the positions in a sequence the ‘match
distribution’.

The term ‘repeat’ will be used for subsequences which
ideally should be masked in the clustering process due to
multiple occurrences in different genes.

Outline of the method

The method can be outlined as follows:

(i) Find all matches and calculate the match distribution for
every sequence.

(ii) Identify regions to be considered as repeats.
(iii) Close short gaps between masked regions, and remove

short masked regions.

The two last steps are detailed below.

Identification of repeats

Obviously, sequence positions included in repeats are likely to
be part of more matches than other positions. Consequently,
these regions feature local maxima in the match distribution.
Not every peak in the match distribution describes a repeat,
however. In particular, when a cluster contains few sequences,
a small number of hits can still be identified as a repeat. As
an additional criterion, we therefore require the number of
matches to exceed a ‘minimum match threshold’, k, before
being considered a repeat.

First, the average m1 and the SD, s1, of the match distribu-
tion are calculated. Position i is considered as a repeat if

m ið Þ > max k‚m1 þ fs1ð Þ: 1

where m(i) describes the number of matches for position i.
In the next section, we will discuss the choice of the para-

meters f (the ‘multiplier’) and k (the ‘minimum match number’).
Again the average m2 and the SD s2 are calculated, but this

time disregarding already masked positions. Every remaining
position is masked as repeat, if it satisfies Equation 1 with m1,

and s1 replaced by m2 and s2. We repeat this procedure until
no more masking is performed.

Post-processing of the masking

Because of variability of the repeats and read errors in ESTs,
repeat regions will often contain short regions not identified
as repeats. Therefore, it is necessary to close gaps between
masked regions. This is conceptually an easy task, but we
need to determine the minimal gaps allowed between masked
regions. This threshold is called the ‘minimum gap size’. The
next section describes the differences in the results gained with
different gap sizes.

After connecting neighbouring masked regions, there are
still very short masked regions left. Though small regions are
statistically repeated very often, it does not fit in our definition
of a repeat as used in the repeat masking process. We therefore
parse the masking again, and unmask short masked regions.
The next section will also discuss different minimum sizes of
a masked region, the ‘minimum length’.

RESULTS

Tuning of the parameters

Our masking method depends on four parameters which have
to be adjusted. To determine these, we ran the algorithm for
a large selection of parameter choices, and clustered the
masked sequences in each case. The result was then compared
with the clustering produced with masking performed with
RepeatMasker.

Minimum length of masked region and
minimum gap size

The influence of the minimum length threshold on the clus-
terings is marginal. Figure 1 illustrates the average changes of
identical clusters with the reference clustering at different
minimum length thresholds. The shown gradient is independ-
ent of the other parameters, all parameter choices result in a
similar curve.

The highest number of identical clusters is attained by keep-
ing all the masked regions (i.e. setting the minimum length
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Figure 1. Number of identical clusters as a function of the minimum length
threshold.
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to 0). However, we still recommend to unmask short regions
with a threshold of 20 as a useful minimum size of repeats. The
impact on the clustering is small, and the masked regions
correspond more closely to RepeatMasker’s output. Repeat-
Masker creates 1264 masked regions in the test dataset, only 2
of them are <20 nt.

Figure 2 shows the effect on the number of identical clusters
when varying the minimum gap size parameter. The curves
show the maximum, average and minimum number of ident-
ical clusters as the other parameters are varied. RepeatBeater
appears very robust against changes of this parameter. In the
range from 40 to 80 nt, we observe small changes. As the gap
size increases beyond this, too much of the sequences is
masked, and consequently clusters are split. Based on these
curves, we choose 70 as the minimum gap size.

The multiplier f and the minimum match number k

Now that the post-processing of the masking is adjusted, we
focus on the parameters involved in the first step of masking:
the detection of the masked regions.

Figure 3 visualizes the results of the tests with differing f
and k. We set f to 2.15, which is optimal for a large range of
values of k. The optimal choice of k depends on the size of the
dataset. Figure 4 illustrates the influence of k in our original
dataset consisting of 105 991 ESTs (from which we extracted
the test dataset). A raw clustering gives 15 938 clusters. After
masking with RepeatMasker, 16 243 clusters and 978 new
singletons are formed: 15 823 of the clusters are identical.
We see from Figure 4 that the number of identical
clusters increase quickly for low k, but that it is relatively
constant for k > 15, with a slow decline for k > 40. We there-
fore set k to 30.

Table 1 shows the distribution of cluster sizes in the test data
in three cases: masking with RepeatBeater, masking with
RepeatMasker and no masking.

An examination of the regions masked by the two methods
shows that out of the total sequence, 15.2% of the
nucleotides are masked by both methods, 5.7% are masked
only by RepeatMasker and 0.8% are masked only by Repeat-
Beater.

Verification on different datasets

The method was also tested on other datasets of different sizes,
using ESTs of species with existing repeat libraries. We pre-
sent cluster size distributions of the clusterings after using
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Figure 2. Number of identical clusters as a function of the minimum gap size
parameter.

 2.05
 2.1

 2.15
 2.2

 2.25
 2.3

 2.35
 2.4

M
ul

tip
lie

r f

5 6 7 8 9  10  11Minimum Match Number k

 231
 232
 233
 234
 235
 236
 237

Id. Clusters

Figure 3. Number of identical clusters as a function of minimum match number
and multiplier.
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Figure 4. For varying minimum match number, the number of clusters identical
to clusters produced when masking is performed by RepeatMasker. The dataset
is the �100 000 sequences from which the test dataset was constructed.

Table 1. Comparison of different clustering results for our test dataset

Cluster size Number of clusters after masking with
RepeatBeater RepeatMasker Unmasked

1 168 186
2 65 67
3–4 59 62
5–8 67 64
9–16 40 41
17–32 20 19
33–64
65–128
129–256
257–512
513–1024
1025–2048 1
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RepeatMasker, after using RepeatBeater and after clustering
the unmasked dataset. Additionally, we compared it to the
corresponding distribution for the UniGene clustering.

We ran RepeatMasker with RepBase update 9.01 (1,6). For
our own masking, we used the recommended parameter setting
from the previous section.

The datasets used are described previously.
For A.thaliana (Table 2), the differences between clusterings

appear to be very small concerning the percentage of equal
clusters. The effect of repeats in this dataset becomes clear
when comparing the largest cluster in each clustering. The clus-
tering produced using RepeatBeater features a much smaller
largest cluster than the other clusterings. But compared with
the UniGene clustering, even our largest cluster is oversized.

For O.sativa (Table 3) as well, the clusterings of the rice
ESTs feature an oversized cluster compared to the UniGene
clustering. Though RepeatBeater does not split this particular
cluster, the results are still similar to the clustering after using
RepeatMasker.

For C.elegans (Table 4), we also suspect an insuffic-
ient RepeatMasker masking. The differences between the

clustering after masking with RepeatMasker and the one res-
ulting from the unmasked sequences are marginal. Using
RepeatBeater again reduces the largest cluster and increases
the similarity with the UniGene clustering, but still the dif-
ferences to the RepeatMasker clustering are small.

DISCUSSION

Analysis of masked regions

While the focus of RepeatBeater is the impact of masking on
clustering, it is also interesting to examine the masked regions
to determine what kinds of repeats are masked. We compared
the masked regions to the repeats detected and classified
by RepeatMasker (see Table 5). The most common family
is SINE/Alu, which is at least partially detected by our tool
in 97% of the cases. In 53 cases (5.7%), it is exactly the same
region, in many others nearly the same. If we mask only
SINE/ALU-repeats with RepeatMasker, we get 96.3% agree-
ment with RepeatBeater at the nucleotide level, compared to
93.5% when all repeat types are masked.

Table 2. Cluster size distribution of clusterings of 100 000 A.thaliana ESTs

Cluster size UniGene Number of clusters after masking with
RepeatBeater RepeatMasker Unmasked

1 204 3017 3010 2988
2 363 1792 1790 1786
3–4 918 2243 2240 2232
5–8 1798 2161 2152 2147
9–16 1905 1433 1408 1403
17–32 1012 701 667 654
33–64 402 321 298 293
65–128 107 110 103 100
129–256 39 41 33 27
257–512 9 10 9 10
513–1024 4 6 5 3
1025–2048 1 1 1
2049–4096 0 0
4097–8192 1 0
8193–16 384 1
16 385–32 768

Table 3. Cluster size distribution of clusterings of 50 000 Oryza sativa ESTs

Cluster size UniGene Number of clusters after masking with
RepeatBeater RepeatMasker Unmasked

1 505 597 700 576
2 192 229 232 227
3–4 445 417 417 412
5–8 718 666 678 647
9–16 814 719 709 656
17–32 502 404 409 353
33–64 221 179 176 138
65–128 92 76 73 46
129–256 18 13 14 7
257–512 2 0 0 0
513–1024 1 0 1 0
1025–2048 0 0 0
2049–4096 0 0 0
4097–8192 0 0 0
8193–16 384 1 1 0
16 385–32 768 1

Table 4. Cluster size distribution of clusterings of 100 000 C.elegans ESTs

Cluster size UniGene Number of clusters after masking with
RepeatBeater RepeatMasker Unmasked

1 785 4688 4666 4642
2 2296 3187 3175 3173
3–4 1926 2842 2788 2784
5–8 1520 2140 2073 2070
9–16 1248 1353 1305 1305
17–32 961 643 575 572
33–64 397 269 235 233
65–128 133 96 74 71
129–256 55 52 31 32
257–512 9 9 5 5
513–1024 2 0 0
1025–2048 1 0 0
2049–4096 0 0
4097–8192 0 0
8193–16 384 1 1

Table 5. Comparison of masked regions

Repeat family Total Found

SINE/Alu 919 893
Low complexity 77 17
Simple repeat 59 12
SINE/MIR 53 0
LINE/L2 34 3
LINE/L1 34 1
DNA/MER1 type 23 2
LTR/MaLR 17 1
DNA/MER2 type 14 1
LTR/ERV1 10 0
Other 24 0
Sum 1264 930

The second column shows how many regions of the given type that were
identified by RepeatMasker, and the third column shows how many of these
were found by RepeatBeater. A region counts as found if there is at least a partial
overlap with a RepeatBeater masked region.
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For the other repeat types, RepeatBeater masks them in very
few cases (most of these cases being low complexity or simple
repeat), and no matches are exact. This is not surprising, since
they occur much less frequently than SINE/Alu. Of course, our
method cannot find repeats which are rare in the actual dataset.

Segments that are masked by RepeatBeater but not by
RepeatMasker deserve special attention, since they can
improve clustering quality by removing false positives not
classified as known repeats. We investigated further the test
dataset containing 1873 sequences in a single cluster. There
are 182 segments of length 20–199 masked only by Repeat-
Beater. Perhaps surprisingly, 43% of them turned out to con-
tain simple poly-T or poly-A sequences of length 6–18, which
clearly should be masked to avoid false positives. In order
to classify the other segments, we compared them with the
Swissprot and Refseq databases. The masked segments alone
are usually too short to give significant hits, so we used the
complete ESTs containing those segments. A search using
Blastx confirmed that the sequences containing segments
masked by RepeatBeater have more hits than other sequences
on average (data not shown). We did not find any overrepres-
entation of specific protein families, however.

In conclusion, the presented results show that masking
repeats in the clustering process can be done without libraries.
The resulting clusterings are very similar to the clustering
gained after masking with RepeatMasker, and probably
even better when good organism-specific libraries are unavail-
able. In addition, the method has the potential to be performed

as a part of the clustering process, and avoid a separate (and
time-consuming) masking step.
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